, Volume 209, Issue 2, pp 419–428 | Cite as

Genetic study of recessive broomrape resistance in sunflower

  • Bassou Akhtouch
  • Lidia del Moral
  • Alberto Leon
  • Leonardo Velasco
  • José M. Fernández-Martínez
  • Begoña Pérez-Vich


Genetic resistance to broomrape (Orobanche cumana Wallr.) in sunflower is mainly monogenic and dominant. Massive use of vertical resistance has led to the progressive extension of increasingly virulent races of the parasite. Additional introduction of horizontal resistance genes is crucial to develop more durable resistance. The objective of this research was to study the inheritance of resistance to broomrape race F in sunflower line K-96 and to identify QTL of potential value for marker assisted pyramiding of resistance genes. The inheritance of broomrape resistance was studied in crosses with the susceptible line P-21 and the line P-96, with oligogenic recessive resistance. Crosses with P-96 revealed broad transgressive segregation for susceptibility in the F2, indicating that both lines possess different resistance alleles. Crosses with P-21 suggested that the trait is mainly controlled by a dominant-recessive epistasis at two loci. Additionally, segregation for plant height was identified and measured in a non-inoculated F2 population. Five QTL on LG 2, 3, 4, 5, and 6 were associated with broomrape resistance traits. Two of them at LG 4 and 5 were also associated with plant height, suggesting an alleged pleiotropic effect of plant height on broomrape resistance. The latter two QTL had been previously identified in the cross P-21 × P-96, whereas the other QTL seem to be involved in K-96 but not in P-96 resistance. This study concluded that K-96 and P-96 have complementary QTL with minor effect on broomrape resistance. They are, therefore, good donor sources for marker-assisted pyramiding programs.


Helianthus annuus Orobanche cumana Sunflower broomrape QTL Horizontal genetic resistance Plant height 


  1. Akhtouch B, Muñoz-Ruz J, Melero-Vara J, Fernández-Martínez J, Domínguez J (2002) Inheritance of resistance to race F of broomrape in sunflower lines of different origins. Plant Breed 121:266–268CrossRefGoogle Scholar
  2. Alcántara E, Morales-García M, Díaz-Sánchez J (2006) Effects of broomrape parasitism on sunflower plants: growth, development, and mineral nutrition. J Plant Nutr 29:1199–1206CrossRefGoogle Scholar
  3. Alonso LC (2014) Syngenta’s integrated sunflowers broomrape management program. In: Proceedings of the 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower, Córdoba, Spain. International Sunflower Association, Paris, France, pp 234–250Google Scholar
  4. Baack EJ, Sapir Y, Chapman MA, Burke JM, Rieseberg LH (2008) Selection on domestication traits and quantitative trait loci in crop–wild sunflower hybrids. Mol Ecol 17:666–677CrossRefPubMedGoogle Scholar
  5. Bohn M, Khairallah MM, González-de-León D, Hoisington DA, Utz HF, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE (1996) QTL mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci 36:1352–1361CrossRefGoogle Scholar
  6. Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267PubMedPubMedCentralGoogle Scholar
  7. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedPubMedCentralGoogle Scholar
  8. Domínguez J (1996) R-41, a sunflower restorer inbred line, carrying two genes for resistance against a highly virulent Spanish population of Orobanche cernua. Plant Breed 115:203–204CrossRefGoogle Scholar
  9. Fernández-Aparicio M, Sillero JC, Pérez-de-Luque A, Rubiales D (2008) Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48:85–94CrossRefGoogle Scholar
  10. Fernández-Martínez JM, Pérez-Vich B, Akhtouch B, Velasco L, Muñoz-Ruz J, Melero-Vara JM, Domínguez J (2004) Registration of four sunflower germplasms resistant to race F of broomrape. Crop Sci 44:1033–1034CrossRefGoogle Scholar
  11. Fernández-Martínez JM, Velasco L, Pérez-Vich B (2012) Progress in research on breeding for resistance to sunflower broomrape. Helia 35(57):47–56CrossRefGoogle Scholar
  12. Fondevilla S, Fernández-Aparicio M, Satovic Z, Emeran AA, Torres AM, Moreno MT, Rubiales D (2010) Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata in pea (Pisum sativum L.). Mol Breed 25:259–272CrossRefGoogle Scholar
  13. Imerovski I, Dimitrijevic A, Miladinovic D, Dedic B, Jocic S, Cvejic S (2014) Preliminary SSR analysis of a novel broomrape resistance source. In: Proceedings 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower, Córdoba, Spain. International Sunflower Association, Paris, France, pp 214–218Google Scholar
  14. Ish-Shalom-Gordon N, Jacobsohn R, Cohen Y (1993) Inheritance of resistance to Orobanche cumana in sunflower. Phytopathology 83:1250–1252CrossRefGoogle Scholar
  15. Jan CC (1992) Inheritance and allelism of mitomycin C- and streptomycin-induced recessive genes for male sterility in cultivated sunflower. Crop Sci 32:317–320CrossRefGoogle Scholar
  16. Kaya Y (2014) Current situation of sunflower broomrape around the world. In: Proceedings 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower, Córdoba, Spain. International Sunflower Association, Paris, France, pp 9–18Google Scholar
  17. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  18. Miller JF, Fick GN (1997) The genetics of sunflower. In: Schneiter AA (ed) Sunflower production and technology., Agronomy monograph 35ASA-CSSA-SSSA, Madison, pp 441–495Google Scholar
  19. Molinero-Ruiz ML, Domínguez J (2014) Current situation of sunflower broomrape in Spain. In: Proceedings 3rd International Symposium on Broomrape (Orobanche spp.) in Sunflower, Córdoba, Spain. International Sunflower Association, Paris, France, pp 19–27Google Scholar
  20. Molinero-Ruiz ML, García-Ruiz R, Melero-Vara JM, Domínguez J (2009) Orobanche cumana race F: performance of resistant sunflower hybrids and aggressiveness of populations of the parasitic weed. Weed Res 49:469–478CrossRefGoogle Scholar
  21. Pacureanu-Joita M, Veronesi C, Raranciuc S, Stanciu D (2004) Parasite-host plant interaction of Orobanche cumana Wallr. (Orobanche cernua Loefl) with Helianthus annuus. In: Seiler GJ (ed) Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA. International Sunflower Association, Paris, France, pp 171–177Google Scholar
  22. Pérez-Vich B, Akhtouch B, Knapp SJ, Leon AJ, Velasco L, Fernández-Martínez JM, Berry ST (2004a) Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor Appl Genet 109:92–102CrossRefPubMedGoogle Scholar
  23. Pérez-Vich B, Akhtouch B, Velasco L, Fernández-Martínez JM, Knapp SJ, Leon AJ, Berry ST (2004b) Mapping QTLs controlling sunflower resistance to broomrape (Orobanche cumana Wallr.). In: Seiler J (ed) Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA. International Sunflower Association, Paris, France, pp 651–656Google Scholar
  24. Pérez-Vich B, Velasco L, Rich PJ, Ejeta G (2013) Marker-assisted and physiology-based breeding for resistance to Orobanchaceae. In: Joel DM, Gressel J, Musselman LJ (eds) Parasitic Orobanchaceae. Springer, New York, pp 369–391CrossRefGoogle Scholar
  25. Pogorletsky PK, Geshele EE (1976) Sunflower immunity to broomrape and rust. In: Proceedings of the 7th International Sunflower Conference, Krasnodar, Russia, pp 238–243Google Scholar
  26. Ramaiah KV (1987) Control of Striga and Orobanche species. A review. In: Weber HC, Forestreuter W (eds) Parasitic flowering plants. Philipps University, Marburg, pp 637–664Google Scholar
  27. Ramos ML, Altieri E, Bulos M, Sala CA (2013) Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. Theor Appl Genet 126:251–263CrossRefPubMedGoogle Scholar
  28. Rodríguez-Ojeda MI, Fernández-Escobar J, Alonso LC (2001) Sunflower inbred line (KI-374) carrying two recessive genes for resistance against a highly virulent Spanish population of Orobanche cernua Loelf./O.cumana Wallr. race F. In: Proceedings of the 7th International Parasitic Weed Symposium, Nantes, France, pp 208–211Google Scholar
  29. Rodríguez-Ojeda MI, Pineda-Martos R, Alonso LC, Fernández-Escobar J, Fernández-Martínez JM, Pérez-Vich B, Velasco L (2013) A dominant avirulence gene in Orobanche cumana triggers Or5 resistance in sunflower. Weed Res 53:322–327CrossRefGoogle Scholar
  30. Shindrova P, Ivaniv P, Nikolova V (1998) Effect of broomrape (Orobanche cumana Wallr.) intensity of attack on some morphological and biochemical indices of sunflower (Helianthus annuus L.). Helia 21(29):55–62Google Scholar
  31. Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, AmesGoogle Scholar
  32. Sukno S, Melero-Vara JM, Fernández-Martínez JM (1999) Inheritance of resistance to Orobanche cernua Loelf. in six sunflower lines. Crop Sci 39:674–678CrossRefGoogle Scholar
  33. Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136CrossRefPubMedGoogle Scholar
  34. Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19PubMedGoogle Scholar
  35. Ter Borg SJ (1999) Broomrape resistance in faba bean: what do we know? In: Cubero JI, Moreno MT, Rubiales D, Sillero JC (eds) Resistance to Orobanche: the state of the art. Junta de Andalucia, Sevilla, pp 25–41Google Scholar
  36. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5Google Scholar
  37. Velasco L, Pérez-Vich B, Muñoz-Ruz J, Fernández-Martínez JM (2003) Inheritance of reduced plant height in sunflower line Dw 89. Plant Breed 122:441–443CrossRefGoogle Scholar
  38. Velasco L, Pérez-Vich B, Jan CC, Fernández-Martínez JM (2007) Inheritance of resistance to broomrape (Orobanche cumana Wallr.) race F in a sunflower line derived from wild sunflower species. Plant Breed 126:67–71CrossRefGoogle Scholar
  39. Velasco L, Pérez-Vich B, Yassein AAM, Jan CC, Fernández-Martínez JM (2012) Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interespecific cross between Helianthus annuus and H. debilis subsp. tardiflorus. Plant Breed 131:220–221CrossRefGoogle Scholar
  40. Vrânceanu AV, Tudor VA, Stoenescu FM, Pirvu N (1980) Virulence groups of Orobanche cumana Wallr., differential hosts and resistance source genes in sunflower. In: Proceedings 9th International Sunflower Conference, Torremolinos, Spain, pp 74–82Google Scholar
  41. Wills DM, Burke JM (2007) Quantitative trait locus analysis of the early domestication of sunflower. Genetics 176:2589–2599CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu W-C, Webb DM, Thompson L, Edwards KJ, Berry S, Leon AJ, Grondona M, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387CrossRefGoogle Scholar
  43. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bassou Akhtouch
    • 1
  • Lidia del Moral
    • 1
  • Alberto Leon
    • 2
  • Leonardo Velasco
    • 1
  • José M. Fernández-Martínez
    • 1
  • Begoña Pérez-Vich
    • 1
  1. 1.Instituto de Agricultura Sostenible (IAS-CSIC)CórdobaSpain
  2. 2.Advanta Seeds JLTDubaiU.A.E.

Personalised recommendations