, Volume 209, Issue 3, pp 665–677 | Cite as

QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States

  • Christopher K. Addison
  • R. Esten MasonEmail author
  • Gina Brown-Guedira
  • Mohammed Guedira
  • Yuanfeng Hao
  • Randall G. Miller
  • Nithya Subramanian
  • Dennis N. Lozada
  • Andrea Acuna
  • Maria N. Arguello
  • Jerry W. Johnson
  • Amir M. H. Ibrahim
  • Russell Sutton
  • Stephen A. Harrison


The aim of this study was to identify quantitative trait locus (QTL) associated with grain yield (GY) in a recombinant inbred line (RIL) population from a cross between two elite soft red winter wheat (SRWW) cultivars (‘Pioneer 26R61’ and ‘AGS2000’). The RIL population was grown from 2011 to 2014 in 12 site-year combinations throughout the southeastern US. Overall, AGS2000 was the higher yielding parental line, out-performing 26R61 in seven of the 12 environments. Mean GY for the RILs ranged from 3.39 to 7.16 t ha−1 with significant genotype, environment and genotype by environmental interaction effects. Nine stable QTL were detected for yield, explaining up to 53 % of the phenotypic variation when fit into a multiple-QTL model. The QTL with the largest effect was detected at the Vrn-B1 locus with the short vernalization winter allele from AGS2000 favorable for yield. In addition, vrn-B1 acted additively with a region on chromosome 2B near the Ppd-B1 locus, indicating that a shorter vernalization requirement combined with the Ppd-B1b allele for photoperiod sensitivity may play a key role in adaptation of SRWW to the southern US. Single nucleotide polymorphism markers linked to additional QTL on chromosomes 3A and 3B were in agreement with a previous genome-wide association study in spring wheat, confirming the importance of these regions for yield across environments and germplasm pools. Overall the stable QTL were more predictive of GY compared to individual site-year QTL, indicating that a targeted QTL approach can be utilized by breeding programs to enrich for favorable loci.


Genotype by environmental interaction QTL mapping Quantitative trait locus Yield 



Best linear unbiased predictor


Days to heading


Grain yield


Plant height


Quantitative trait locus


Recombinant inbred line


Test weight



This research was funded by the Arkansas Wheat Promotion Board and Agriculture and Food Research Initiative Competitive Grant #2012-67013-19436 of the USDA National Institute of Food and Agriculture to R. Esten Mason. Funding for development of SNP genotyping platforms and gene marker development was provided by the USDA-NIFA Grant No. 2011-68002-30029, “Triticeae Coordinated Agricultural Project”.

Supplementary material

10681_2016_1650_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 90 kb)
10681_2016_1650_MOESM2_ESM.pdf (98 kb)
Supplementary material 2 (PDF 98 kb)
10681_2016_1650_MOESM3_ESM.pdf (102 kb)
Supplementary material 3 (PDF 101 kb)
10681_2016_1650_MOESM4_ESM.pdf (472 kb)
Supplementary material 4 (PDF 471 kb)


  1. Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492. doi: 10.2135/cropsci2013.11.0793 CrossRefGoogle Scholar
  2. Araki H, Hamada A, Hossain MA, Takahashi T (2012) Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res 137:27–36. doi: 10.1016/j.fcr.2012.09.006 CrossRefGoogle Scholar
  3. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733. doi: 10.1007/s00122-007-0603-4 CrossRefPubMedGoogle Scholar
  4. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012a) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271. doi: 10.1007/s00122-012-1831-9 CrossRefPubMedGoogle Scholar
  5. Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012b) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485. doi: 10.1007/s00122-012-1927-2 CrossRefPubMedGoogle Scholar
  6. Blum A, Klueva N, Nguyen HT (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123. doi: 10.1023/a:1004083305905 CrossRefGoogle Scholar
  7. Bonneau J, Taylor J, Parent B, Bennett D, Reynolds M, Feuillet C, Langridge P, Mather D (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761. doi: 10.1007/s00122-012-2015-3 CrossRefPubMedGoogle Scholar
  8. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi: 10.1093/bioinformatics/btg112 CrossRefPubMedGoogle Scholar
  9. Charmet G, Storlie E, Oury FX, Laurent V, Beghin D, Chevarin L, Lapierre A, Perretant MR, Rolland B, Heumez E, Duchalais L, Goudemand E, Bordes J, Robert O (2014) Genome-wide prediction of three important traits in bread wheat. Mol Breed 34:1843–1852. doi: 10.1007/s11032-014-0143-y CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen YH, Carver BF, Wang SW, Zhang FQ, Yan LL (2009) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118:881–889. doi: 10.1007/s00122-008-0946-5 CrossRefPubMedGoogle Scholar
  11. Crossa J, Cornelius PL (1997) Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Sci 37:406–415CrossRefGoogle Scholar
  12. Dennis ES, Peacock WJ (2009) Vernalization in cereals. J Biol (Lond) 8:57, Article No.: 57. doi: 10.1186/jbiol156
  13. Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One. doi: 10.1371/journal.pone.0033234 Google Scholar
  14. Foulkes MJ, Sylvester-Bradley R, Worland AJ, Snape JW (2004) Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica 135:63–73. doi: 10.1023/B:EUPH.0000009542.06773.13 CrossRefGoogle Scholar
  15. Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65. doi: 10.1007/s00438-004-1095-4 CrossRefPubMedGoogle Scholar
  16. Guedira M, Maloney P, Xiong M, Petersen S, Murphy JP, Marshall D, Johnson J, Harrison S, Brown-Guedira G (2014) Vernalization duration requirement in soft winter wheat is associated with variation at the VRN-B1 locus. Crop Sci 54:1960–1971. doi: 10.2135/cropsci2013.12.0833 CrossRefGoogle Scholar
  17. Guedira M, Xiong M, Hao YF, Johnson J, Harrison SH, Marshall D, Brown-Guedira G (in review) Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes Vernalization-1 and Photoperiod-1. PLoS OneGoogle Scholar
  18. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324CrossRefPubMedGoogle Scholar
  19. Hao YF, Chen ZB, Wang YY, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411. doi: 10.1007/s00122-011-1675-8 CrossRefPubMedGoogle Scholar
  20. Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75. doi: 10.3835/plantgenome2010.12.0029 CrossRefGoogle Scholar
  21. Kamran A, Randhawa HS, Pozniak C, Spaner D (2013) Phenotypic effects of the flowering gene complex in Canadian spring wheat germplasm. Crop Sci 53:84–94. doi: 10.2135/cropsci2012.05.0313 CrossRefGoogle Scholar
  22. Kuchel H, Williams K, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor Appl Genet 115:1015–1027. doi: 10.1007/s00122-007-0628-8 CrossRefPubMedGoogle Scholar
  23. Lopes MS, Reynolds MP (2011) Drought adaptive traits and wide adaptation in elite lines derived from resynthesized hexaploid wheat. Crop Sci 51:1617–1626. doi: 10.2135/cropsci2010.07.0445 CrossRefGoogle Scholar
  24. Lopes MS, Dreisigacker S, Pena RJ, Sukumaran S, Reynolds MP (2015) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 128. doi: 10.1007/s00122-014-2444-2
  25. Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511. doi: 10.1534/genetics.107.077297 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie DA, Kato K (2013) Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed 31:27–37. doi: 10.1007/s11032-012-9765-0 CrossRefGoogle Scholar
  27. Samonte SOP, Wilson LT, McClung AM, Medley JC (2005) Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Sci 45:2414–2424. doi: 10.2135/cropsci2004.0627 CrossRefGoogle Scholar
  28. Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190. doi: 10.1023/a:1017594422176 CrossRefGoogle Scholar
  29. Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408. doi: 10.1007/s10681-006-9208-2 CrossRefGoogle Scholar
  30. Spiertz JHJ, Hamer RJ, Xu H, Primo-Martin C, Don C, van der Putten PEL (2006) Heat stress in wheat (Triticum aestivum L.): effects on grain growth and quality traits. Eur J Agron 25:89–95. doi: 10.1016/j.eja.2006.04.012 CrossRefGoogle Scholar
  31. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128:353–363. doi: 10.1007/s00122-014-2435-3 CrossRefPubMedGoogle Scholar
  32. Sung S, Amasino R (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10. doi: 10.1016/j.pbi.2003.11.010 CrossRefPubMedGoogle Scholar
  33. Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263CrossRefGoogle Scholar
  34. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi: 10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  35. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  36. Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, Int Wheat Genome S (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796. doi: 10.1111/pbi.12183 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Worland AJ, Borner A, Korzun V, Li WM, Petrovic S, Sayers EJ (1998) The influence of photoperiod genes on the adaptability of European winter wheats (reprinted from wheat: prospects for global improvement, 1998). Euphytica 100:385–394. doi: 10.1023/a:1018327700985 CrossRefGoogle Scholar
  38. Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang AM (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007. doi: 10.1111/j.1744-7909.2010.00967.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Christopher K. Addison
    • 1
  • R. Esten Mason
    • 1
    Email author
  • Gina Brown-Guedira
    • 2
  • Mohammed Guedira
    • 2
  • Yuanfeng Hao
    • 3
  • Randall G. Miller
    • 1
  • Nithya Subramanian
    • 4
  • Dennis N. Lozada
    • 1
  • Andrea Acuna
    • 1
  • Maria N. Arguello
    • 1
  • Jerry W. Johnson
    • 2
  • Amir M. H. Ibrahim
    • 4
  • Russell Sutton
    • 5
  • Stephen A. Harrison
    • 6
  1. 1.Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Crop ScienceNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Crop and Soil SciencesUniversity of GeorgiaGriffinUSA
  4. 4.Department of Soil and Crop SciencesTexas A&MCollege StationUSA
  5. 5.Texas A&M AgriLife Research CenterTexas A&M-CommerceCommerceUSA
  6. 6.School of Plant, Environmental and Soil SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations