, Volume 209, Issue 3, pp 565–584 | Cite as

Identification of adaptation traits to drought in collections of maize landraces from southern Europe and temperate regions

  • Brigitte Gouesnard
  • Anne Zanetto
  • Claude Welcker


Breeding maize for drought tolerance is becoming a major challenge in a context of climate changes and restricted irrigation. Gene banks contain underused genetic resources and adaptation traits for drought tolerance may be present in some populations originating from dry regions. We screened, under contrasted water regimes in dry-Mediterranean climate, populations originating from dry cropping zones in Southern Europe, and other populations from temperate regions with a good combining ability for yield and good agronomic features under drought scenarios in a previous study. We evaluated 78 populations for leaf growth, anthesis-silking interval, number of ears per plant, number of kernels per plot, and grain yield in the presence and absence of water stress, in field conditions, over 2 years. Maximum grain yield and the sensitivity of grain yield to water deficit were highly variable. Positive correlations between sensitivity and performance in well-watered conditions were found for yield and number of kernels. Landraces originating from dry regions were generally less sensitive to water stress and had a limited grain yield potential, with variability observed even among accessions from the same survey area. However, some of them had a relatively high yield under stress conditions. During screening for traits associated with the maintenance of grain yield under conditions of water limitation, we identified sources of drought tolerance in breeding populations and landraces from temperate areas as well as in landraces collected in dry regions, indicating large reservoir of native traits in collections for breeding for drought-prone environments.


Zea mays L. Genetic resources Landraces Drought Phenotyping Adaptation 



This research was supported by a grant from the French Ministry of Agriculture, and was jointly funded by the Promaïs association. We thank G. Evgenidis (Cereal Institute - National Agricultural Research Foundation in Thermi Thessaloniki, Greece), M. Motto (Istituto Sperimentale per la Cerealicoltura in Bergamo, Italy), A. Alvarez (CSIC Estacion Experimental de Aula Dei in Zaragoza, Spain) for supplying some of the materials. The other accessions were provided from the French maize resource network of National Institute for Agronomic Research in Mauguio, France ( choice: maize). We thank Ch. Fournier and V. Negre (UMR Lepse in Montpellier, France) for calculating LAI with the Cincalli database. We thank the technicians from the Mauguio Experimental Unit for scoring traits and B. Suard (UMR Lepse) for controlling and characterizing soil water status in the four experiments.


  1. Almeida GD, Makumbi D, Magorokosho C, Nair S, Borem A, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize landraces reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126(3):583–600. doi: 10.1007/s00122-012-2003-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amigues JP, Debaeke P, Itier B, Lemaire G, Seguin B, Tardieu F, Thomas A (2006) Sécheresse et agriculture. Réduire la vulnérabilité de l’agriculture à un risque accru de manque d’eau. Expertise scientifique collective. INRA, FranceGoogle Scholar
  3. Andrade FH, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M (2002) Kernel number prediction in maize under nitrogen or water stress. Crop Sci 42:1173–1179CrossRefGoogle Scholar
  4. Araus JL, Sanchez C, Edmeades GO (2011) Phenotyping maize for adaptation to drought. In: Monneveux P, Ribaut JM (eds.) Drought phenotyping in crops: from theory to practice. CGIAR Generation Challenge Programme Texcoco, Mexico, pp 263–283Google Scholar
  5. Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize. From theory to practice.
  6. Berardo N, Mazzinelli G, Valoti P, Lagana P, Redaelli R (2009) Characterization of maize germplasm for the chemical composition of the grain. J Agric Food Chem 57(6):2378–2384. doi: 10.1021/jf803688t CrossRefPubMedGoogle Scholar
  7. Betran FJ, Beck D, Banziger M, Edmeades GO (2003) Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res 83(1):51–65. doi: 10.1016/s0378-4290(03)00061-3 CrossRefGoogle Scholar
  8. Bolanos J, Edmeades GO (1993) 8 cycles of selection for drought tolerance in lowland tropical maize. 2. Responses in reproductive behavior. Field Crops Res 31(3–4):253–268. doi: 10.1016/0378-4290(93)90065-u CrossRefGoogle Scholar
  9. Bolanos J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48(1):65–80. doi: 10.1016/0378-4290(96)00036-6 CrossRefGoogle Scholar
  10. Cairns JE, Sanchez C, Vargas M, Ordonez R, Araus JL (2012) Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J Integr Plant Biol 54(12):1007–1020. doi: 10.1111/j.1744-7909.2012.01156.x CrossRefPubMedGoogle Scholar
  11. Campos H, Cooper A, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90(1):19–34. doi: 10.1016/j.fcr.2004.07.003 CrossRefGoogle Scholar
  12. Campos H, Cooper M, Edmeades GO, Loffler C, Schussler JR, Ibanez M (2006) Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica 51(2):369–381Google Scholar
  13. Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize Landraces: II. Direct and correlated responses among secondary traits. Crop Sci 39(5):1315–1324CrossRefGoogle Scholar
  14. Chapuis R, Delluc C, Debeuf R, Tardieu F, Welcker C (2012) Resiliences to water deficit in a phenotyping platform and in the field: How related are they in maize? Eur J Agron 42:59–67. doi: 10.1016/j.eja.2011.12.006 CrossRefGoogle Scholar
  15. Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a “gene-to-phenotype” modeling approach. Genetics 183(4):1507–1523. doi: 10.1534/genetics.109.105429 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dignat G, Welcker C, Sawkins M, Ribaut JM, Tardieu F (2013) The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants. Plant Cell Environ 36(6):1105–1119. doi: 10.1111/pce.12045 CrossRefPubMedGoogle Scholar
  17. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–2002Google Scholar
  18. Edmeades GO (2013) Progress in achieving and delivering drought tolerance in maize—an update. In: ISAAA (ed)Google Scholar
  19. Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Banziger M (1999) Selection improves drought tolerance in tropical maize landraces: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39(5):1306–1315CrossRefGoogle Scholar
  20. Ferro RA, Brichette I, Evgenidis G, Karamaligkas C, Moreno-Gonzalez J (2007) Variability in European maize (Zea mays L.) landraces under high and low nitrogen inputs. Genet Resour Crop Evol 54(2):295–308. doi: 10.1007/s10722-005-4500-x CrossRefGoogle Scholar
  21. Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber WK, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact of man and society. Cambridge University Press, Cambridge, pp 161–170Google Scholar
  22. Frova C, Krajewski P, di Fonzo N, Villa M (1999) Genetic analysis of drought tolerance in maize by moleculars markers. I. Yield components. Theor Appl Genet 99:280–288CrossRefGoogle Scholar
  23. Gallais A, Monod JP (1998) Management of the genetic resources of maize in France: from their characterization to the first stages of their evaluation. Comptes Rendus de l’Academie d’Agriculture de France 84(3):173–181Google Scholar
  24. Gallais A, Duval H, Garnier P, Charcosset A (1992) Un exemple de gestion des ressources génétiques en vue de la sélection. In: Complexes d’espèces, flux de gènes et ressources génétiques des plantes. Colloque en hommage à Jean Pernès. Bureau des ressources génétiques, pp 476–490Google Scholar
  25. Gallais A, Barriere A, Boyat A, Charcosset A, Dallard J, Derieux M, Desselle JL, Dubreuil P, Duval H, Garnier P, Gouesnard B, Lavergne V, Lefort M, Miclo P, Montalant Y, Panouille A, Pollacsek M, Rebourg C, Rimieri P, Monod JP, Baratin A, Baron M, Berthe G, Cambolive M, Carolo P, Devaux F (2000) A French cooperative programme for management and utilization of maize genetic resources. Broadening the genetic base of crop production. Cabi, Wallingford UK, pp 331–340Google Scholar
  26. Gauthier P, Gouesnard B, Dallard J, Redaelli R, Rebourg C, Charcosset A, Boyat A (2002) RFLP diversity and relationships among traditional European maize landraces. Theor Appl Genet 105(1):91–99. doi: 10.1007/s00122-002-0903-7 CrossRefPubMedGoogle Scholar
  27. Gilmour A, Gogel B, Cullis B, Thomson R (2009) ASReml User Guide release 3.0. VSN International Ltd, Hemel Hempstead, UKGoogle Scholar
  28. Gouesnard B, Dallard J, Bertin P, Boyat A, Charcosset A (2005) European maize landraces: genetic diversity, core collection definition and methodology of use. Maydica 50(3–4):225–234Google Scholar
  29. Groupe maïs DGAP-INRA, Promaïs (1994) Cooperative program for management and utilization of maize genetic resources. Paper presented at the Proccedings of the Genetic Resources Section Eucapia, Clermont Ferrand, France, 15–18 March 1994Google Scholar
  30. Grzesiak MT, Marcińska I, Janowiak F, Rzepka A, Hura T (2012) The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant 34(5):1757–1764. doi: 10.1007/s11738-012-0973-3 CrossRefGoogle Scholar
  31. Hao Z, Li X, Xie C, Li M, Zhang D, Bai L, Zhang S (2008) Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol 153:73–83CrossRefGoogle Scholar
  32. Hao Z-F, Li X-H, Su Z-J, Xie C-X, Li M-S, Liang X-L, Weng J-F, Zhang D-G, Li L, Zhang S-H (2011) A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci 61(2):101–108. doi: 10.1270/jsbbs.61.101 CrossRefGoogle Scholar
  33. Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Chang Biol 20(3):867–878. doi: 10.1111/gcb.12381 CrossRefPubMedGoogle Scholar
  34. Heisey PW, Morris ML (2006) Economic impact of water-limited conditions on cereal grain productions. In: Ribaut JM (ed) Drought adaptation in cereals. The Haworth Press, Philadelphia, pp 17–48Google Scholar
  35. Hodgkin T, Brown AHD, van Hintum TJL, Morales BAV (1995) Core collections of plant genetic resources. International Plant Genetic Resources Institute, RomeGoogle Scholar
  36. Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton ML (1999) Plant genetic resources: what can they contribute toward increased crop productivity? PNAS 96:5937–5943CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lu Y, Hao Z, Xie C, Crossa J, Araus J-L, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res 124(1):37–45. doi: 10.1016/j.fcr.2011.06.003 CrossRefGoogle Scholar
  38. Malvar RA, Butron A, Alvarez A, Ordas B, Soengas P, Revilla P, Ordas A (2004) Evaluation of the European Union maize landrace core collection for resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae). J Econ Entomol 97(2):628–634. doi: 10.1603/0022-0493-97.2.628 CrossRefPubMedGoogle Scholar
  39. Malvar RA, Butron A, Alvarez A, Padilla G, Cartea ME, Revilla P, Ordas A (2007) Yield performance of the European Union Maize Landrace Core Collection under multiple corn borer infestations. Crop Prot 26(5):775–781. doi: 10.1016/j.cropro.2006.07.004 CrossRefGoogle Scholar
  40. Mercer K, Martinez-Vasquez A, Perales HR (2008) Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evol Appl 1(3):489–500. doi: 10.1111/j.1752-4571.2008.00038.x CrossRefPubMedPubMedCentralGoogle Scholar
  41. Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119(5):913–930. doi: 10.1007/s00122-009-1099-x CrossRefPubMedGoogle Scholar
  42. Mieg IB, Moreno-Gonzalez J, Lopez A (2001) Variability of European maize landraces for forage digestibility using near infrared reflectance spectroscopy (NIRS). Maydica 46(4):245–252Google Scholar
  43. Monneveux P, Sanchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source landraces: evidence of progress. Crop Sci 46(1):180–191. doi: 10.2135/cropsci2005.04-0034 CrossRefGoogle Scholar
  44. Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond Ser B 281(980):277–294. doi: 10.1098/rstb.1977.0140 CrossRefGoogle Scholar
  45. Ortiz R, Taba S, Tovar VHC, Mezzalama M, Xu Y, Yan J, Crouch JH (2010) Conserving and enhancing maize genetic resources as global public goods—a perspective from CIMMYT. Crop Sci 50(1):13. doi: 10.2135/cropsci2009.06.0297 CrossRefGoogle Scholar
  46. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. doi:
  47. Revilla P, Soengas P, Cartea ME, Malvar RA, Ordas A (2003) Isozyme variability among European maize Landraces and the introduction of maize in Europe. Maydica 48(2):141–152Google Scholar
  48. Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55(407):2461–2472. doi: 10.1093/jxb/erh200 CrossRefPubMedGoogle Scholar
  49. Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, de Gonzalez Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize.1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92(7):905–914. doi: 10.1007/bf00221905 CrossRefPubMedGoogle Scholar
  50. Ribaut JM, Jiang C, GonzalezdeLeon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94(6–7):887–896. doi: 10.1007/s001220050492 CrossRefGoogle Scholar
  51. Rodriguez VM, Romay MC, Ordas A, Revilla P (2010) Evaluation of European maize (Zea mays L.) germplasm under cold conditions. Genet Resour Crop Evol 57(3):329–335. doi: 10.1007/s10722-009-9529-9 CrossRefGoogle Scholar
  52. Salhuana W, Pollak L (2006) Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355Google Scholar
  53. Semagn K, Beyene Y, Warburton ML, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna BM (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize landraces evaluated under water-stressed and well-watered environments. BMC Genomics. doi: 10.1186/1471-2164-14-313 PubMedPubMedCentralGoogle Scholar
  54. Tardieu F, Granier C, Muller B (2011) Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol 14(3):283–289. doi: 10.1016/j.pbi.2011.02.002 CrossRefPubMedGoogle Scholar
  55. Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stresses maize (Zea mays L.). Theor Appl Genet 97:744–755CrossRefGoogle Scholar
  56. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:667–712CrossRefGoogle Scholar
  57. Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58(2):339–349. doi: 10.1093/jxb/erl227 CrossRefPubMedGoogle Scholar
  58. Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F (2011) A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiol 157(2):718–729. doi: 10.1104/pp.111.176479 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Brigitte Gouesnard
    • 1
  • Anne Zanetto
    • 2
  • Claude Welcker
    • 3
  1. 1.INRA, UMR AGAPMontpellier CedexFrance
  2. 2.INRA, UE DiascopeMauguioFrance
  3. 3.INRA, UMR LEPSEMontpellier CedexFrance

Personalised recommendations