Euphytica

, Volume 207, Issue 2, pp 367–376 | Cite as

Development of a molecular marker system to distinguish shell thickness in oil palm genotypes

  • Enrique Ritter
  • Emma Lopez de Armentia
  • Pratiwi Erika
  • Javier Herrero
  • Yulia Puspita Niggrum
  • Baitha Santika
  • Yulismawati Endang
  • Upit Sarimana
  • Zulhermana Sembiring
  • Dwi Asmono
  • Mónica Hernandez
Article

Abstract

The shell thickness gene Sh is one of the most important genes in oil palm. It controls the fruit type which in turn is associated with palm oil yield. Based on previous information about Sh alleles, we have developed a molecular marker system which is composed of three primer pairs and the application of two restriction enzymes which allows to discriminate between one dura and two pisifera alleles that are currently known. The different components of this marker system have been validated on 207 dura genotypes and 50 pisifera genotypes of different origins, as well as in 242 tenera genotypes derived from crosses of individual dura and pisifera palms. All evaluated genotypes showed the amplification products or restriction fragments, indicating a general applicability of the proposed system. The results of the application of this molecular marker system were compiled for all potentially existing fruit type genotypes, and can be used conveniently for selecting the desired genotypes or for identifying specific genotypes in mixtures. Methodological details were indicated for applying the marker system, as well as limitations with respect to potentially existing genetic variability. Useful applications of the system for breeding and seed certification are discussed.

Keywords

Sh gene Dura Pisifera Tenera Molecular marker Elaeis guineensis Jacq. 

References

  1. Ajambang W, Sudarsono Asmono D, Touran N (2012) Microsatellite markers reveal Cameroon’s wild oil palm population as a possible solution to broaden the genetic base in the Indonesia–Malaysia oil palm breeding programs. Afr J Biotechnol 11(69):13244–13249. doi:10.587/AJB11.3897 CrossRefGoogle Scholar
  2. Arias D, Montoya C, Romero H (2012) Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon. Plant Genet Resour. doi:10.1017/S1479262112000482 Google Scholar
  3. Arias D, González M, Prada F, Restrepo E, Romero H (2013) Morpho-agronomic and molecular characterisation of oil palm Elaeis guineensis Jacq. material from Angola. Tree Genet Genomes 9(5):1283–1294. doi:10.1007/s11295-013-0637-5 CrossRefGoogle Scholar
  4. Arias D, Ochoa I, Castro F, Romero H (2014) Molecular characterization of oil palm Elaeis guineensis Jacq. of different origins for their utilization in breeding programs. Plant Genet Resour. doi:10.1017/S1479262114000148 Google Scholar
  5. Bakoumé C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billotte N (2014) Genetic diversity of the world’s largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genet Resour Crop Evol 62:349–360. doi:10.1007/s10722-014-0156-8 CrossRefGoogle Scholar
  6. Beirnaert A, Vanderweyen R (1941) Contribution a l’étude génétique et biométrique des variétés d’Elaeis guineensis Jacq. Publ. Inst. Nat. Etude agron. Congo Belge. Ser Sci 27:1–101Google Scholar
  7. Billotte N, Marseillac N, Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R et al (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.) TAG. Theor Appl Genet 110(4):754–765. doi:10.1007/s00122-004-1901-8 CrossRefPubMedGoogle Scholar
  8. Cochard B, Adon B, Rekima S, Billotte N, de Chenon RD, Koutou A et al (2009) Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genet Genomes 5(3):493–504. doi:10.1007/s11295-009-0203-3 CrossRefGoogle Scholar
  9. Corley RHV, Tinker PHB (2003) The oil palm. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  10. Dreni L, Kater MM (2014) MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytol 201(3):717–732. doi:10.1111/nph.12555 CrossRefPubMedGoogle Scholar
  11. Donini P, Cooke RJ, Reeves JC (2000) Molecular markers in variety and seed testing. Dev Plant Genet Breed 5:27–34. doi:10.1016/S0168-7972(00)80005-5 CrossRefGoogle Scholar
  12. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180. doi:10.1105/tpc.019158 CrossRefGoogle Scholar
  13. Kushairi A, Rajanaidu N (2000) Breeding populations, seed production and nursery management. In: Basiron Y, Jalani BS and Chan KW (Eds) Advances in oil palm research. MPOB 1:39–96Google Scholar
  14. Mayes S, Jack PL, Marshall DF, Corley RHV (1997) Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq.). Genome 40(1):116–122. doi:10.1139/g97-016 CrossRefPubMedGoogle Scholar
  15. Moretzsohn MC, Nunes CDM, Ferreira ME, Grattapaglia D (2000) RAPD linkage mapping of the shell thickness locus in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet. doi:10.1007/s00421-008-0955-8 Google Scholar
  16. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  17. Singh R, Low ET, Ooi LC, Ong-Abdullah M, Ting NC, Nagappan J, Nookiah R, Amiruddin MD, Rosli R, Manaf MA et al (2013a) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature. doi:10.1038/nature12356 Google Scholar
  18. Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Sambanthamurthi R et al (2013b) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature. doi:10.1038/nature12309 Google Scholar
  19. Tranbarger TJ, Kluabmongkol W, Sangsrakru D, Morcillo F, Tregear JW, Tragoonrung S, Billotte N (2012) SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol 12(1):1. doi:10.1186/1471-2229-12-1 PubMedCentralCrossRefPubMedGoogle Scholar
  20. United States Department of Agriculture (2014) Oilseeds: world markets and trade. http://www.fas.usda.gov/data/oilseeds-world-markets-and-trade. Accessed 2 Dec 2014
  21. Zhao Q, Weber AL, McMullen MD, Guill K, Doebley J (2011) MADS-box genes of maize: frequent targets of selection during domestication. Genet Res 93(1):65–75. doi:10.1017/S0016672310000509 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Enrique Ritter
    • 1
  • Emma Lopez de Armentia
    • 1
  • Pratiwi Erika
    • 2
  • Javier Herrero
    • 2
  • Yulia Puspita Niggrum
    • 2
  • Baitha Santika
    • 2
  • Yulismawati Endang
    • 2
  • Upit Sarimana
    • 2
  • Zulhermana Sembiring
    • 2
  • Dwi Asmono
    • 2
  • Mónica Hernandez
    • 1
  1. 1.NEIKER TechnaliaArkaute-VitoriaSpain
  2. 2.Department of Research and DevelopmentPT Sampoerna Agro TbkPalembangIndonesia

Personalised recommendations