Euphytica

, Volume 205, Issue 1, pp 243–253 | Cite as

QTL mapping of adult-plant resistance to stripe rust in wheat line P9897

  • X. L. Zhou
  • D. J. Han
  • X. M. Chen
  • J. M. Mu
  • W. B. Xue
  • Q. D. Zeng
  • Q. L. Wang
  • L. L. Huang
  • Z. S. Kang
Article

Abstract

Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease of common wheat. Wheat line P9897 showed adult-plant resistance (APR) to stripe rust for several years. To map resistance quantitative trait loci (QTL), F2:3 lines from a cross of P9897 with susceptible Mingxiang 169 were phenotyped for stripe rust response in replicated field trials in 2013. Resistance gene analog polymorphism and simple sequence repeat markers were used to identify markers linked to the resistance QTL. Two QTL, QYr.nafu-2BL and QYr.nafu-3BS conferring APR to stripe rust, were mapped to 8.8 and 3.3 cM intervals on chromosome 2BL and 3BL, respectively. QYr.nafu-2BL is likely a new APR gene for resistance to stripe rust, and QYr.nafu-3BS is likely the same locus as previously identified QYr.uga-3BS.1. These QTL with linked markers could be used in developing wheat cultivars with stripe rust resistance.

Keywords

Durable resistance Puccinia striiformis f. sp. tritici Quantitative trait locus Triticum aestivum Yellow rust 

References

  1. Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Rudd JC (2013) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 33:385–399CrossRefGoogle Scholar
  2. Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f sp. tritici] on wheat. Can J Plant Pathol 27:314–337CrossRefGoogle Scholar
  3. Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655CrossRefGoogle Scholar
  4. Chen XM (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627CrossRefGoogle Scholar
  5. Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326CrossRefGoogle Scholar
  6. Chen XM, Line RF (1995) Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology 85:567–572CrossRefGoogle Scholar
  7. Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355CrossRefGoogle Scholar
  8. Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112:581–591PubMedCrossRefGoogle Scholar
  9. Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973PubMedCrossRefGoogle Scholar
  10. Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology 98:803–809PubMedCrossRefGoogle Scholar
  11. Hao YF, Chen ZB, Wang YY, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411PubMedCrossRefGoogle Scholar
  12. Hayden MJ, Kuchel H, Chalmers KJ (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1641–1747PubMedCrossRefGoogle Scholar
  13. He ZH, Lan CX, Chen XM, Zou YC, Zhuang QS, Xia XC (2011) Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin 44:2193–2215Google Scholar
  14. Khlestkina EK, Röder MS, Unger O, Meinel A, Börner A (2007) More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica 153:1–10CrossRefGoogle Scholar
  15. Kosambi DD (1944) The estimation of map distance from recombination values. Annu Eugen 12:172–175CrossRefGoogle Scholar
  16. Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287PubMedCrossRefGoogle Scholar
  17. Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118PubMedCrossRefGoogle Scholar
  18. Line RF, Qayoum A (1992) Virulence aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Dep Agric Tech Bull 1788Google Scholar
  19. Lowe I, Jankuloski L, Chao S, Chen XM, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157PubMedCrossRefGoogle Scholar
  20. Lu YM, Lan CX, Liang SS, Zhou XC, Liu D, Zhou G, Lu QL, Jing JX, Wang MN, Xia XC, He ZH (2009) QTL mapping for adult plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359PubMedCrossRefGoogle Scholar
  21. Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409PubMedCrossRefGoogle Scholar
  22. McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180CrossRefGoogle Scholar
  23. McIntosh RA, Amazaki YY, Dubcovsky J, Rogers WJ, Morris C, Somers DJ, Appels R, Devos KM (2013) MacGene 2012: catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed Aug 4 2013
  24. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2014) Catalogue of gene symbols for wheat: 2013-2014 supplement. http://www.maswheat.ucdavis.edu/
  25. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  26. Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125CrossRefGoogle Scholar
  27. Ren RS, Wang MN, Chen XM, Zhang ZJ (2012a) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857PubMedCrossRefGoogle Scholar
  28. Ren Y, He ZH, Li J, Lillemo M, Wu L, Bai B, Lu QX, Zhu HZ, Zhou G, Du JY, Lu QL, Xia XC (2012b) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221PubMedCrossRefGoogle Scholar
  29. Ren Y, Li ZF, He ZH, Wu L, Bai B, Lan CX, Wang CF, Zhou G, Zhu HZ, Xia XC (2012c) QTL mapping of adult-plant resistances to stripe rust and leaf rust in a Chinese wheat cultivar Bainong 64. Theor Appl Genet 125:1253–1262PubMedCrossRefGoogle Scholar
  30. Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034PubMedCrossRefGoogle Scholar
  31. Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel S, Forrest K, Hayden M, Rebetzke G (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294PubMedCrossRefGoogle Scholar
  32. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet. doi:10.1007/s00122-013-2159-9 PubMedCentralGoogle Scholar
  33. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedCentralPubMedGoogle Scholar
  34. Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45CrossRefGoogle Scholar
  35. Singh RP, Sorrells ME, Nelson JC (2000) Mapping of Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155CrossRefGoogle Scholar
  36. Singh RP, Duvillier E, Huerta-Espino J (2004) Virulence to yellow rust resistance gene Yr27: In: A new threat to stable wheat production in Asia (Abs). Second regional yellow rust conference for CWANA, Islamabad, Pakistan 22–26 March, 2004Google Scholar
  37. Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186CrossRefGoogle Scholar
  38. Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  39. Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellite to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352CrossRefGoogle Scholar
  40. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  41. Spielmeyer W, Lagudah ES, Sharp PJ (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336Google Scholar
  42. Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890PubMedCrossRefGoogle Scholar
  43. Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904CrossRefGoogle Scholar
  44. Wang JK (2009) Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin 35:239–245CrossRefGoogle Scholar
  45. Wellings C (2007) A new pathotype of wheat stripe rust with implications for the VPM resistance. The University of Sydney, Plant Breeding Institute, Cereal rust report (season 2006) 4:1–2Google Scholar
  46. William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990PubMedCrossRefGoogle Scholar
  47. Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH, Chen XM (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533PubMedCrossRefGoogle Scholar
  48. Yang J, Hu CC, Ye XZ, Zhu J (2005) QTL Network 2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China (http://www.ibi.zju.edu.cn/software/qtlnetwork)
  49. Yu LX, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680CrossRefGoogle Scholar
  50. Zhou XL, Wang WL, Wang LL, Hou DY, Jing JX, Wang Y, Xu ZQ, Yao Q, Yin JL, Ma DF (2011) Genetics and molecular mapping of genes for high-temperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor Appl Genet 123:431–438PubMedCrossRefGoogle Scholar
  51. Zhou XL, Han DJ, Gou HL, Wang QL, Zeng QD, Yuan FP, Zhan GM, Huang LL, Kang ZS (2013) Molecular mapping of a stripe rust resistance gene in wheat cultivar Wuhan 2. Euphytica 196:251–259CrossRefGoogle Scholar
  52. Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX (2014) Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor Appl Genet. doi:10.1007/s00122-014-2269-z Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • X. L. Zhou
    • 1
  • D. J. Han
    • 1
    • 2
  • X. M. Chen
    • 4
  • J. M. Mu
    • 1
    • 2
  • W. B. Xue
    • 1
    • 2
  • Q. D. Zeng
    • 1
    • 3
  • Q. L. Wang
    • 1
    • 3
  • L. L. Huang
    • 1
    • 3
  • Z. S. Kang
    • 1
    • 3
  1. 1.State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingChina
  2. 2.College of AgronomyNorthwest A&F UniversityYanglingChina
  3. 3.College of Plant ProtectionNorthwest A&F UniversityYanglingChina
  4. 4.US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, and Department of Plant PathologyWashington State UniversityPullmanUSA

Personalised recommendations