, Volume 205, Issue 2, pp 599–613 | Cite as

Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt

  • Jungsu Jung
  • Hyun Jung Kim
  • Je Min Lee
  • Chang Sik Oh
  • Hyung-Jin Lee
  • Inhwa YeamEmail author


Marker assisted selection (MAS) for disease resistance is widely applied in practical tomato breeding programs in the public and private sectors. Due to its commercial value and importance as a model crop, tomato has taken the lead in MAS among the horticultural crops. Tomato yellow leaf curl virus, which is transmitted by the whitefly (Bemisia tabaci), is a major threat to tomato production worldwide. The Ty1 and Ty3 resistance loci originated from Solanum chilense LA1969 and LA1932/LA2779, respectively. Recently, the gene responsible for Ty1 resistance was identified as a DFDGD-class RNA-dependent RNA polymerase and was demonstrated to be allelic with Ty3 resistance. The Ph3 resistance locus from S. pimpinellifolium (L3708), which confers incomplete resistance against a widerange of Phytophthora infestans isolates, is considered the most effective source of resistance against tomato late blight. A coiled-coil nucleotide-binding leucine-rich repeat gene on chromosome 9 was determined to be responsible for Ph3 resistance. Resistance against verticillium wilt diseases in tomato is conferred by the Ve locus that contains two closely linked, inversely oriented genes: Ve1 and Ve2. The Ve locus provides resistance against Verticillium alboatrum race 1 and encodes an extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. We developed reliable and comprehensive molecular markers based on either the single nucleotide polymorphisms or insertions/deletions directly responsible for the resistance provided by the Ty1, Ph3, and Ve1 loci. These gene-based functional molecular markers are expected to enhance the effectiveness and accuracy of MAS for disease resistance in tomato breeding programs.


Solanum lycopersicum Functional markers Allele-specific markers SNP HRM 



This work was supported by Golden Seed Project (Center for Horticultural Seed Development, 2013003-04-2-SBG10) funded by the Ministry of Agriculture, Food and Rural Affairs, and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014R1A1A1A05006972).

Supplementary material

10681_2015_1442_MOESM1_ESM.pptx (136 kb)
Supplementary material 1 (PPTX 135 kb)


  1. Acciarri N, Rotino GL, Tamietti G, Valentino D, Voltattorni S, Sabatini E (2007) Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breed 126:617–621CrossRefGoogle Scholar
  2. Agrama HA, Scott JW (2006) Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J Am Hortic Sci 131:267–272Google Scholar
  3. Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530CrossRefPubMedGoogle Scholar
  4. AVRDC Report 1998. Taiwan: Asian vegetable research and development center 1999. pp. 9–13Google Scholar
  5. Bagge M, Xia X, Lubberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216CrossRefPubMedGoogle Scholar
  6. Black LL, Wang TC, Hanson PM, Chen JT (1996) Late blight resistance in four wild tomato accessions: effectiveness in diverse locations and inheritance of resistance. Phytopathology 86:S24Google Scholar
  7. Brouwer DJ, St Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub NILs. Theor Appl Genet 108:628–638CrossRefPubMedGoogle Scholar
  8. Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, Kormelink R (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci USA 111:12942–12947PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cai G, Restrepo S, Myers K, Zuluaga P, Danies G, Smart C, Fry W (2013) Gene profiling in partially resistant and susceptible near-isogenic tomatoes in response to late blight in the field. Mol Plant Pathol 14:171–184CrossRefPubMedGoogle Scholar
  10. Caicedo AL, Williamson SH, Hernandez RD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756CrossRefPubMedGoogle Scholar
  11. Choi IY, Hyten DL, Matukumalli LK (2007) A soybean transcript map: gene distribution, haplotype and single nucleotide polymorphism analysis. Genetics 176:685–696PubMedCentralCrossRefPubMedGoogle Scholar
  12. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B 363:557–572CrossRefGoogle Scholar
  13. Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broadspectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319CrossRefGoogle Scholar
  14. Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240Google Scholar
  15. Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107CrossRefGoogle Scholar
  16. Fradin EF, Zhang Z, Ayala JCJ, Castroverde CDM, Nazar RN, Robb J, Liu C, Thomma BPHJ (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:320–332PubMedCentralCrossRefPubMedGoogle Scholar
  17. Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novelsource of resistance to tomato yellow leaf curl virus exhibiting asymptomless reaction to viral infection. J Am Soc Hortic Sci 123:1004–1007Google Scholar
  18. Giancola S, McKhann HI, Berard A, Camilleri C, Durand S, Libeau P, Roux F, Rebound X, Gut Brunel D (2006) Utilization of three highthroughput SNP genotyping methods, the GOOD assay, Amplifluor and Taqman, in diploid and polyploidy plants. Theor Appl Genet 112:1115–1124CrossRefPubMedGoogle Scholar
  19. Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja VM, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 125:15–20Google Scholar
  20. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128CrossRefGoogle Scholar
  21. Jehan T, Lakhanpaul S (2006) Single nucleotide polymorphism (SNP)-methods and applications in plant genetics: a review. Indian J Biotechnol 5:435–459Google Scholar
  22. Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284CrossRefGoogle Scholar
  23. Ji Y, Scott J, Hanson P, Graham E, Maxwell D (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, The Netherlands, pp 343–362CrossRefGoogle Scholar
  24. Ji Y, Scott JW, Schuster DJ (2009a) Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. HortScience 44:614–618Google Scholar
  25. Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009b) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of Tomato. J Am Soc Hortic Sci 134:281–288Google Scholar
  26. Jones E, Chu W, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C, Warren J, Babayew J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea Mays L.) germplasm. Mol Breed 24:165–176CrossRefGoogle Scholar
  27. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS 98:6511–6515PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kim HJ, Han JH, Kim S, Lee HR, Shin JS, Kim JH, Cho J, Kim YH, Lee HJ, Kim BD, Choi D (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor Appl Genet 122:1051–1058Google Scholar
  29. Kim MJ, Mutschler MA (2006) Characterization of late blight resistance derived from Solanum pimpinellifolium L3708 against multiple isolates of the pathogen Phytophthora infestans. J Am Soc Hortic Sci 131:637–645Google Scholar
  30. Komori T, Nitta N (2005) Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci 55:93–98CrossRefGoogle Scholar
  31. Kuklev MY, Fesenko IA, Karlov GI (2009) Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Russ J Genet 45:575–579CrossRefGoogle Scholar
  32. Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349CrossRefGoogle Scholar
  33. Lagudah ES, Krattinger SG, Herrera-Foesse S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898CrossRefPubMedGoogle Scholar
  34. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedCentralPubMedGoogle Scholar
  35. Li J, Liu L, Bai Y, Finkers R, Wang F, Du Y, Yang Y, Xie B, Visser RGF, van Heusden AW (2011) Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica 179:427–437CrossRefGoogle Scholar
  36. Merk HL, Foolad MR (2012) Parent-offspring correlation estimate of heritability for late blight resistance conferred by an accession of the tomato wild species Solanum pimpinellifolium. Plant Breed 131:203–210CrossRefGoogle Scholar
  37. Merk HL, Ashrafi H, Foolad MR (2012) Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica 187:63–75CrossRefGoogle Scholar
  38. Montgomery J, Wittwer CT, Palais R, Luming Z (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nature 2:59–66Google Scholar
  39. Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant-Microbe Interact 11:259–269CrossRefGoogle Scholar
  40. Murray HG, Thompson WF (1998) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:4321–4325Google Scholar
  41. Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0 Phytophthora infestans. Tomato Genet Coop Rep 21:30Google Scholar
  42. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by highresolution melting analysis. Clin Chem 50:1748–1754Google Scholar
  43. Rodewald J, Trognitz B (2013) Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol Plant Pathol 14:740–757CrossRefPubMedGoogle Scholar
  44. Salgotra RK, Gupta BB, Stewart CN Jr (2014) From genomics to functional markers in the era of next-generation sequencing. Biotechnol Lett 36:417–426CrossRefPubMedGoogle Scholar
  45. Schaible L, Cannon OS, Waddoups B (1951) Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41:986–990Google Scholar
  46. Smart CD, Tanksley SD, Mayton H, Fry WE (2007) Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Dis 91:1045–1049CrossRefGoogle Scholar
  47. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5PubMedCentralCrossRefPubMedGoogle Scholar
  48. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212CrossRefGoogle Scholar
  49. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–dependent RNA polymerases. PLoS Genet 9:e1003399PubMedCentralCrossRefPubMedGoogle Scholar
  50. White H, Potts G (2006) Mutation scanning by high resolution melt analysis. Evaluation of rotor-gene 6000 (Corbett Life Science), HR-1 and 384-well lightscanner (Idaho Technology). Nati Genet Ref Lab (Wessex, 2006)Google Scholar
  51. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van-der-Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34CrossRefGoogle Scholar
  52. Yang X, Caro M, Hutton SF, Scott JW, Guo Y, Wang X, Rashid MH, Szinay D, de Jong H, Visser RG, Bai Y, Du Y (2014) Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breed 34:749–760PubMedCentralPubMedGoogle Scholar
  53. Yang W, Sacks EJ, Lewis Ivey ML, Miller SA, Francis DM (2005) Resistance in Lycopersicon esculentum Intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527Google Scholar
  54. Yeam I, Kang BC, Lindeman W, Frantz JD, Faber N, Jahn MM (2005) Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theor Appl Genet 112:178–186CrossRefPubMedGoogle Scholar
  55. Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88(2):141–146CrossRefPubMedGoogle Scholar
  56. Zhang C, Liu L, Zheng Z, Sun Y, Zhou L, Yang Y, Cheng F, Zhang Z, Wang X, Huang S, Xie B, Du Y, Bai Y, Li J (2013) Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theor Appl Genet 126:2643–2653CrossRefPubMedGoogle Scholar
  57. Zhang C, Liu L, Wang X, Vossen J, Li G, Li T, Zheng Z, Gao J, Guo Y, Visser RG, Li J, Bai Y, Du Y (2014) The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor Appl Genet 127:1353–1364PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jungsu Jung
    • 1
  • Hyun Jung Kim
    • 2
    • 5
  • Je Min Lee
    • 3
  • Chang Sik Oh
    • 4
  • Hyung-Jin Lee
    • 4
  • Inhwa Yeam
    • 1
    • 2
    Email author
  1. 1.Department of Horticulture and BreedingAndong National UniversityAndongsiRepublic of Korea
  2. 2.Institute of Agricultural Science and TechnologyAndong National UniversityAndongsiRepublic of Korea
  3. 3.Department of Horticultural ScienceKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Department of Plant Science, College of Agriculture and Life SciencesKyung Hee UniversitySeoulRepublic of Korea
  5. 5.Department of Eco-Friendly HorticultureCheonam Yonam CollegeCheonansiKorea

Personalised recommendations