Advertisement

Euphytica

, Volume 205, Issue 3, pp 903–913 | Cite as

Cloning and functional analyses of pepper CaRKNR involved in Meloidogyne incognita resistance

  • Zhenchuan Mao
  • Pingping Zhu
  • Feng Liu
  • Yonghong Huang
  • Jian Ling
  • Guohua Chen
  • Yuhong Yang
  • Dongxin Feng
  • Bingyan Xie
Article

Abstract

Root-knot nematodes (Meloidogyne spp.) are destructive pests of crops. Pepper (Capsicum annuum L.) contains genes that control resistance to root-knot nematodes. Using suppression subtractive hybridization and RACE strategies, a nucleotide-binding site and leucine-rich repeat (NBS-LRR) family gene, CaRKNR (FJ231739), was isolated and cloned from the nematode-resistant pepper line HDA149. CaRKNR is a novel NBS-LRR gene with an open reading frame of 3600 bp that is homologous (70.45 % identity) to the gene Mi-1.2. After Meloidogyne incognita inoculation, real-time qPCR showed that the CaRKNR expression level was increased from 0.63 to 2.16 times. Using the virus-induced gene silencing system, the CaRKNR gene’s expression level was reduced significantly than controls, and the average numbers of galls and egg masses in silenced seedlings were 44.39 and 42.01, respectively, while the controls were 0.13. This study revealed that CaRKNR was induced by M. incognita and its expression correlated with pepper resistance against root-knot nematodes.

Keywords

Capsicum annuum L. Meloidogyne incognita Resistance gene Cloning Function analysis 

Abbreviations

ARC

APAF-1, R proteins, and CED-4

Blast

Basic local alignment search tool

LRR

Leucine-rich repeat

NB

Nucleotide binding

NJ

Neighbour-joining

ORF

Open reading frame

Pfam

Protein family

RACE

Rapid amplification of cDNA end

RKN

Root-knot nematode (Meloidogyne spp.)

RT-qPCR

Reverse transcriptase quantitative polymerase chain reaction

SSH

Suppression subtractive hybridization

VIGS

Virus induced gene silencing

Notes

Acknowledgments

We thank INRA Versailles for providing the pepper HDA149. This work was supported by the National Science Foundation of China (30971905, 31101425), Agro-scientific Research in the Public Interest (201103018) and the China Agriculture Research System (CARS-25).

Supplementary material

10681_2015_1438_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1886 kb)

References

  1. Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915CrossRefPubMedGoogle Scholar
  2. Ammiraju JS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance geneMi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484PubMedGoogle Scholar
  3. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399CrossRefPubMedGoogle Scholar
  4. Bleve-Zacheo T, Bongiovanni M, Melillo MT, Castagnone-Sereno P (1998) The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Sci 133:79–90CrossRefGoogle Scholar
  5. Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26:895–905CrossRefPubMedGoogle Scholar
  6. Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls A, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B (2004) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–1327CrossRefPubMedGoogle Scholar
  7. Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor Appl Genet 103:592–600CrossRefGoogle Scholar
  8. Djian-Caporalino C, Fazari A, Arguel M, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486CrossRefPubMedGoogle Scholar
  9. Ernst K, Kumar A, Kriseleit D, Kloos DU, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136CrossRefPubMedGoogle Scholar
  10. Gilbert JC, McGuire DC (1956) Inheritance of resistance to severe root knot from Meloidogyne incognitain commercial type tomatoes. Proc Am Soc Hortic Sci 68:437–442Google Scholar
  11. González-Candelas L, Alamar S, Sánchez-Torres P, Zacarías L, Marcos J (2010) A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biol 10:194–211PubMedCentralCrossRefPubMedGoogle Scholar
  12. Huang X, McGiffen M, Kaloshian I (2004) Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. J Nematol 36(1):69–75PubMedCentralPubMedGoogle Scholar
  13. Jablonska B, Ammiraju JS, Bhattarai KK, Mantelin S, de Ilarduya OM, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044–1054PubMedCentralCrossRefPubMedGoogle Scholar
  14. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. doi: 10.1038/ng.2877 Google Scholar
  15. Liu Y, Schiff M, Dinesh-Kumar S (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786CrossRefPubMedGoogle Scholar
  16. López-pérez M, Ballester AR, González-candelas L (2014) Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit. Mol Plant Pathol. doi: 10.1111/mpp.1217 PubMedGoogle Scholar
  17. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR encoding genes in Arabidopsis. Plant Cell Online 15:809–834CrossRefGoogle Scholar
  18. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell Online 10:1307–1319CrossRefGoogle Scholar
  19. Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649CrossRefPubMedGoogle Scholar
  20. Paal J, Henselewski H, Muth J, Meksem K, Menéndez CM, Salamini F, Ballvora A, Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38:285–297CrossRefPubMedGoogle Scholar
  21. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, González-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernández S, Leyva-González MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. PNAS 111(14):5135–5140PubMedCentralCrossRefPubMedGoogle Scholar
  22. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Miof tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754PubMedCentralCrossRefPubMedGoogle Scholar
  23. Thies JA, Fery RL (1998) Modified expression of the N gene for southern root-knot nematode resistance in pepper at high soil temperatures. J Am Soc Hortic Sci 123:1012–1015Google Scholar
  24. Tytgat T, Meutter JD, Gheysen G, Coomans A (2000) Sedentary endoparasitic nematodes as a model for other plant parasitic nematodes. Nematology 2:113–121CrossRefGoogle Scholar
  25. Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136:3999–4009PubMedCentralCrossRefPubMedGoogle Scholar
  26. Van Der Vossen EA, Der Voort V, Rouppe JN, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576CrossRefPubMedGoogle Scholar
  27. Zheng J, Zou X, Mao Z, Xie B (2011) A novel pepper (Capsicum annuum L.) WRKY gene, CaWRKY30, is involved in pathogen stress responses. J Plant Biol 54:329–337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Zhenchuan Mao
    • 1
  • Pingping Zhu
    • 1
  • Feng Liu
    • 1
  • Yonghong Huang
    • 1
  • Jian Ling
    • 1
  • Guohua Chen
    • 1
  • Yuhong Yang
    • 1
  • Dongxin Feng
    • 1
  • Bingyan Xie
    • 1
  1. 1.Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural CropsMinistry of AgricultureBeijingChina

Personalised recommendations