Advertisement

Euphytica

, Volume 205, Issue 1, pp 231–241 | Cite as

Genetic analysis and molecular mapping of QTLs associated with resistance to bacterial blight in a rice mutant, SA0423

  • Hsin-Yi Tseng
  • Da-Gin Lin
  • Hsiao-Ying Hsieh
  • Ya-June Tseng
  • Wen-Bin Tseng
  • Chun-Wei Chen
  • Chang-Sheng WangEmail author
Article

Abstract

Bacterial blight disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases in rice producing areas. SA0423 is a broad-range resistance mutant selected from a popular japonica-type variety, TNG67, using sodium azide mutagenesis. Genetic analysis and QTL mapping of SA0423 were performed using the descendants obtained from crossing with Taichung Native 1, a susceptible and well-known indica variety, by challenging with a Taiwanese Xoo isolate, XF89b. Genetic analysis displayed that the resistance of SA0423 is regulated by quantitative trait loci (QTLs) with incomplete dominance. A linkage map covering 12 chromosomes and consisting of 148 SSR as well as 3 InDel markers was constructed. Three QTLs are identified on chromosomes 11, 8 and 6 and account for 21.1, 11 and 9.6 % of the observed phenotypic variance, respectively. Three QTLs are localized to 6, 7 and 14 confidence intervals, respectively. These QTLs contribute to approximately 47 % of the total phenotypic variation of the F2 population. No epistatic effect could be detected among the three QTLs. Our results provide a suitable source of potential disease resistance genes and establish a system for improving rice bacterial blight resistance through marker-assisted selection.

Keywords

Rice Bacterial blight disease Resistance Mutant QTL mapping R/qtl 

Notes

Acknowledgments

The financial support from the Ministry of Science and Technology (NSC 102-2317-B-005-01) of Taiwan to C. S. Wang is acknowledged. Suggestions from anonymous reviewers that improved the quality of this article were highly appreciated.

Supplementary material

10681_2015_1435_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 45 kb)
10681_2015_1435_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)

References

  1. Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer Science+Business Media, New YorkCrossRefGoogle Scholar
  2. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890PubMedCrossRefGoogle Scholar
  3. Chen X, Temnykh S, Xu Y, Cho Y, McCouch S (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95(4):553–567CrossRefGoogle Scholar
  4. Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park YJ, Bennetzen JL, Zhang Q, Wang S (2006a) Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112(3):455–461. doi: 10.1007/s00122-005-0145-6 PubMedCrossRefGoogle Scholar
  5. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006b) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20(10):1250–1255. doi: 10.1101/gad.1416306 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971PubMedCentralPubMedGoogle Scholar
  7. Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426. doi: 10.1146/annurev.phyto.37.1.399 PubMedCrossRefGoogle Scholar
  8. Consortia S (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20CrossRefGoogle Scholar
  9. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509. doi: 10.1146/annurev.phyto.44.070505.143420 PubMedCrossRefGoogle Scholar
  10. Gnanamanickam S, Priyadarisini VB, Narayanan N, Vasudevan P, Kavitha S (1999) An overview of bacterial blight disease of rice and strategies for its management. Curr Sci 77(11):1435–1444Google Scholar
  11. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G-L, White FF (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435(7045):1122–1125PubMedCrossRefGoogle Scholar
  12. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69(4):315–324PubMedCrossRefGoogle Scholar
  13. Henshall J, Bell A, Dominik S (2007) Significance thresholds in two-stage QTL mapping experiments. In: Genetic improvement: making it happen. Proceedings of the seventeenth conference of the association for the advancement of animal breeding and genetics, Armidale, New South Wales, Australia, 23rd–26th September 2007. Association for the advancement of animal breeding and genetics, pp 387–390Google Scholar
  14. Hsieh SPY (2003) Rice bacterial blight. In: Cheng CH (ed) Plant protection illustrations 8: Rice Protection (The next book). Bureau of Animal and Plant Health Inspection and Quaratine, Council of Agriculture, Executive Yuan. Taipei, Taiwan, pp 317–338Google Scholar
  15. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320CrossRefGoogle Scholar
  16. Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant-Microbe interact 17(12):1348–1354. doi: 10.1094/MPMI.2004.17.12.1348 PubMedCrossRefGoogle Scholar
  17. Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH (2006) Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Mol Genet Genomics 275(4):354–366. doi: 10.1007/s00438-005-0091-7 PubMedCrossRefGoogle Scholar
  18. Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol 22:309–330CrossRefGoogle Scholar
  19. Kado CI, Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Psedumonoas and Xanthomonas. Phytopathology 60:969–976PubMedCrossRefGoogle Scholar
  20. Kao C-H, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152(3):1203–1216PubMedCentralPubMedGoogle Scholar
  21. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluation resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57(6):537–541Google Scholar
  22. Khush GS, Mackill DJ, Sidhu GS (1989) Breeding rice for resistance to bacterial blight. Bacterial Blight of Rice. IRRI, Manila, pp 207–217Google Scholar
  23. Kottapalli KR, Sarla N, Kikuchi S (2006) In silico insight into two rice chromosomal regions associated with submergence tolerance and resistance to bacterial leaf blight and gall midge. Biotechnol Adv 24(6):561–589. doi: 10.1016/j.biotechadv.2006.05.003 PubMedCrossRefGoogle Scholar
  24. Li ZK, Sanchez A, Angeles E, Singh S, Domingo J, Huang N, Khush GS (2001) Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics 159(2):757–765PubMedCentralPubMedGoogle Scholar
  25. Li ZK, Arif M, Zhong DB, Fu BY, Xu JL, Domingo-Rey J, Ali J, Vijayakumar CH, Yu SB, Khush GS (2006) Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA 103(21):7994–7999. doi: 10.1073/pnas.0507492103 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lin XH, Zhang DP, Xie YF, Gao HP, Zhang Q (1996) Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86:1156–1159CrossRefGoogle Scholar
  27. Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S (2011) A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34(11):1958–1969PubMedCrossRefGoogle Scholar
  28. McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13Google Scholar
  29. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199–207PubMedCrossRefGoogle Scholar
  30. Mew TW (1987) Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol 25:359–382CrossRefGoogle Scholar
  31. Mew TW, Vera Cruz CM, Medalla ES (1992) Changes in race frequency of Xanthomonas oryza pv. oryza in response to the planting of rice cultivars in Philippines. Plant Dis 76:1029–1032CrossRefGoogle Scholar
  32. Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7(5):303–324. doi: 10.1111/j.1364-3703.2006.00344.x PubMedCrossRefGoogle Scholar
  33. Perumalsamy S, Bharani M, Sudha M, Nagarajan P, Arul L, Saraswathi R, Balasubramanian P, Ramalingam J (2010) Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed 129(4):400–406Google Scholar
  34. Sama VS, Rawat N, Sundaram RM, Himabindu K, Naik BS, Viraktamath BC, Bentur JS (2014) A putative candidate for the recessive gall midge resistance gene gm3 in rice identified and validated. Theor Appl Genet 127(1):113–124. doi: 10.1007/s00122-013-2205-7 PubMedCrossRefGoogle Scholar
  35. Satagopan JM, Sen S, Churchill GA (2007) Sequential quantitative trait locus mapping in experimental crosses. Stat Appl Genet Mol Biol 6(1):Article 12Google Scholar
  36. Sen Ś, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159(1):371–387PubMedCentralPubMedGoogle Scholar
  37. Shanti ML, Shenoy VV, Lalitha Devi G, Mohan Kumar V, Premalatha P, Naveen Kumar G, Shashidhar HE, Zehr UB, Freeman WH (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. J Plant Pathol 92(2):495–501Google Scholar
  38. Shen Y, Ronald P (2002) Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microbes Infect/Inst Pasteur 4(13):1361–1367CrossRefGoogle Scholar
  39. Silvar C, Dhif H, Igartua E, Kopahnke D, Gracia MP, Lasa JM, Ordon F, Casas AM (2010) Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Mol Breed 25(4):581–592CrossRefGoogle Scholar
  40. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806PubMedCrossRefGoogle Scholar
  41. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37(4):517–527. doi: 10.1046/j.1365-313X.2003.01976.x PubMedCrossRefGoogle Scholar
  42. Tabien R, Li Z, Paterson AH, Marchetti MA, Stansel JW, Pinson SRM (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105:313–324PubMedCrossRefGoogle Scholar
  43. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedCrossRefGoogle Scholar
  44. Wang AZ, Wang CS (2009) Genomic breeding developing rice variety with durable resistance to bacterial leaf blight and blast disease. J Agric For 58(1):11–24Google Scholar
  45. Wang CS, Tseng TH, Lin CY (2002) Rice Biotech Research at Taiwan Agricultural Research Institute. In: Yang H, Yu J, Ramachahandran S, Pan SQ (eds) Securing the rice bowl - genomic approaches and international efforts. vol APBN. 6. KH Biotech Services Pte. Ltd., pp 950–956 (invited review)Google Scholar
  46. Wang CS, Wang AZ, Lin DG (2013) The application of mutants in breeding disease resistance in rice. Paper presented at the Special issue or the symposium on important crop pathogen detection and management, TaichungGoogle Scholar
  47. Wu D-H, Wu H-P, Wang C-S, Tseng H-Y, Hwu K-K (2013) Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 192(1):131–143CrossRefGoogle Scholar
  48. Xia C, Chen H, Zhu X (2012) Identification, mapping, isolation of the genes resisting to bacterial blight and application in rice. Mol Plant Breed 3(12):121–131Google Scholar
  49. Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 113(7):1347–1355. doi: 10.1007/s00122-006-0388-x PubMedCrossRefGoogle Scholar
  50. Yang Z, Sun X, Wang S, Zhang Q (2003) Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet 106(8):1467–1472PubMedGoogle Scholar
  51. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95(4):1663–1668PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hsin-Yi Tseng
    • 1
  • Da-Gin Lin
    • 1
  • Hsiao-Ying Hsieh
    • 1
  • Ya-June Tseng
    • 1
    • 2
  • Wen-Bin Tseng
    • 2
  • Chun-Wei Chen
    • 3
  • Chang-Sheng Wang
    • 2
    Email author
  1. 1.Biotechnology DivisionTaiwan Agricultural Research InstituteTaichungTaiwan, ROC
  2. 2.Department of AgronomyNational Chung-Hsing UniversityTaichungTaiwan, ROC
  3. 3.Plant Pathology DivisionTaiwan Agricultural Research InstituteTaichungTaiwan, ROC

Personalised recommendations