, Volume 205, Issue 3, pp 877–888 | Cite as

Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.)

  • Lianguang Shang
  • Qingzhi Liang
  • Yumei Wang
  • Xiaocui Wang
  • Kunbo Wang
  • Abdugheni Abduweli
  • Lingling Ma
  • Shihu Cai
  • Jinping Hua


Cotton fiber is widely used as the raw materials for the textile industry. With the development in spinning technology, the improvement of cotton fiber quality is becoming more and more important. However, negative correlation between yield and fiber quality is an obstacle for cotton improvement. Molecular marker assisted selection provides a potential methodology to break the negative correlation. The main objective of this research was to construct a genetic linkage map and mapping QTL for fiber quality, further to facilitate marker assisted selection for fiber quality traits in Upland cotton (Gossypium hirsutum L.). A genetic linkage map, consisting of 581 loci and spanning 3714.4 cM of the cotton genome, was constructed using recombinant inbred lines population derived from the cross GX1135 × GX100-2, with an average interval of 6.39 cM between adjacent loci. Fiber quality traits were investigated in recombinant inbred lines population sampled by lines from three environments respectively, and each followed a randomized complete block design with two replications. Twenty quantitative trait loci were detected for four fiber quality traits: eight for fiber length, three for fiber strength, five for fiber elongation, and four for fiber micronaire. Among these QTLs, qFL-chr5-2 and qFL-chr10-1 for fiber length, qFS-chr1-1 for fiber strength, and qFM-chr19-1 for fiber micronaire were detected again, which verified the previous results in F2, F2:3 and F2:4 populations (four environments), therefore these major QTLs were stable and especially useful for marker assisted selection to improve fiber quality in Upland cotton.


QTLs Fiber quality traits Recombinant inbred lines Upland cotton (Gossypium hirsutum L.) 



We thank Dr. Youlu Yuan (Chinese Academy of Agricultural Sciences) and Dr. Zhengsheng Zhang (Southwestern University) for providing SWU SSR primers. Thanks to Xianhui Yan and Yihua Rong (Xiangyang Academy of Agricultural Sciences, Hubei Province), and Yuhua Li (China Agricultural University) for their contributions on field experiments, sampling and data acquisition. This research was supported by the National Natural Science Foundation of China (31171591), and a grant from the National High Technology Research and Development Program (2011AA10A102) to J HUA.

Conflict of interest

We have no conflict of interests.

Supplementary material

10681_2015_1434_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 27 kb)
10681_2015_1434_MOESM2_ESM.doc (27 kb)
Supplementary material 2 (DOC 27 kb)
10681_2015_1434_MOESM3_ESM.doc (26 kb)
Supplementary material 3 (DOC 26 kb)
10681_2015_1434_MOESM4_ESM.doc (239 kb)
Supplementary material 4 (DOC 239 kb)


  1. Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7:e45739PubMedCentralCrossRefPubMedGoogle Scholar
  2. Cao Z, Wang P, Zhu X, Chen H, Zhang T (2014) SSR marker-assisted improvement of fiber qualities in Gossypium hirsutum using G. barbadense introgression lines. Theor Appl Genet 127:587–594CrossRefPubMedGoogle Scholar
  3. Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ, Chen XY, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Deynze AV, Zhu YX, Yu SX, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310PubMedCentralCrossRefPubMedGoogle Scholar
  4. Chen H, Qian N, Guo W, Song Q, Li B, Deng F, Dong C, Zhang T (2009) Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro. D8 in Upland cotton. Theor Appl Genet 119:605–612CrossRefPubMedGoogle Scholar
  5. Dong ZH, Shi YZ, Zhang JH, Wang SF, Li JW, Liu AY, Tang SR, Zhu P, Yuan YL (2009) Molecular marker-assisted selection and pyramiding breeding of major QTLs for cotton fiber length. Cotton Sci 21:279–283Google Scholar
  6. Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120:943–953CrossRefPubMedGoogle Scholar
  7. Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genom 15:397CrossRefGoogle Scholar
  8. Guo W, Zhang T, Ding Y, Zhu Y, Shen X, Zhu X (2005) Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton. Acta Genetica Sin 32:1275–1285Google Scholar
  9. Kohel RJ, Yu J, Park YH, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172CrossRefGoogle Scholar
  10. Kumar P, Singh R, Lubbers EL, Shen X, Paterson AH, Campbell BT, Jones DC, Chee PW (2012) Mapping and validation of fiber strength quantitative trait loci on chromosome 24 in Upland cotton. Crop Sci 52:1115–1122CrossRefGoogle Scholar
  11. Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140CrossRefGoogle Scholar
  12. Lacape J, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palai O, Georges S, Giband M, de Assuncao H, Augusto P, Barroso V, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132PubMedCentralCrossRefPubMedGoogle Scholar
  13. Lacape J, Gawrysiak G, Tuong-Vi C, Viot C, Llewellyn D, Liu S, Jacobs J, Becker D, Vianna Barroso PA, de Assuncao JH, Palai O, Georges S, Jean J, Giband M (2013) Mapping QTLs for traits related to phenology, morphology and yield components in an inter-specific Gossypium hirsutum × G. barbadense cotton RIL population. Field Crops Res 144:256–267CrossRefGoogle Scholar
  14. Lander E, Kruglyak L (1995) Genetic dissection of complex traits—guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247CrossRefPubMedGoogle Scholar
  15. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  16. Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu Y, Wang J, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefPubMedGoogle Scholar
  17. Liang Q, Hu C, Hua H, Li Z, Hua J (2013) Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull 58:3233–3243CrossRefGoogle Scholar
  18. Liang Q, Li P, Hu C, Hua H, Li Z, Rong Y, Wang K, Hua J (2014) Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. J Genet 93:63–78CrossRefPubMedGoogle Scholar
  19. McCouch SR, Chen XL, Panaud O, Temnykh S, Xu YB, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99CrossRefPubMedGoogle Scholar
  20. Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291CrossRefPubMedGoogle Scholar
  21. Ning Z, Chen H, Mei H, Zhang T (2014) Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica 195:143–156CrossRefGoogle Scholar
  22. Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396PubMedGoogle Scholar
  23. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo M, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman MU, Rainville LN, Rambani A, Reddy UK, Rong J, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MFS, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KFX, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427CrossRefPubMedGoogle Scholar
  24. Percival AE, Wendel JF, Stewart JM (1999) Cotton: origin, history, technology, and production. In: Smith WC, Cothren JT (eds) Taxonomy and germplasm resources. Wiley, New YorkGoogle Scholar
  25. Qin H, Guo W, Zhang Y, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 177:883–894CrossRefGoogle Scholar
  26. Rong JK, Pierce GJ, Waghmare VN, Rogers C, Desai A, Chee PW, May OL, Gannaway JR, Wendel JF, Wilkins TA, Paterson AH (2005) Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet 111:1137–1146CrossRefPubMedGoogle Scholar
  27. Rong J, Feltus EA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JR, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588PubMedCentralCrossRefPubMedGoogle Scholar
  28. Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:776CrossRefGoogle Scholar
  29. Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380CrossRefGoogle Scholar
  30. Shi YZ, Liu AY, Li JW, Shao YH, Yuan YL (2007) The major QTLs linked to fiber strength for cotton breeding program by molecular marker assisted selection. Mol Plant Breed 5:521–527Google Scholar
  31. Su C, Lu W, Zhao T, Gai J (2010) Verification and fine-mapping of QTLs conferring days to flowering in soybean using residual heterozygous lines. Chin Sci Bull 55:499–508CrossRefGoogle Scholar
  32. Sun F, Zhang J, Wang S, Gong W, Shi Y, Liu A, Li J, Gong J, Shang H, Yuan Y (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30:569–582CrossRefGoogle Scholar
  33. Tanksley SD, Hewitt J (1988) Use of molecular markers in breeding for soluble solids content in tomato—a re-examination. Theor Appl Genet 75:811–823CrossRefGoogle Scholar
  34. Ulloa M Jr, Meredith WR (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170Google Scholar
  35. Wang S, Basten C, Zeng Z (2005) Windows QTL cartographer 2.5. North Carolina State University, RaleighGoogle Scholar
  36. Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T (2006) QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica 152:367–378CrossRefGoogle Scholar
  37. Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T (2007) QTL mapping of yield and yield components for elite hybrid derived-RILs in Upland cotton. J Genet Genomics 34:35–45CrossRefPubMedGoogle Scholar
  38. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu Y, Wang J, Yu S (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefPubMedGoogle Scholar
  39. Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T (2012b) Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 124:1415–1428CrossRefPubMedGoogle Scholar
  40. Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287CrossRefPubMedGoogle Scholar
  41. Yu J, Jung S, Cheng CH, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D (2014) CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res 42(Database issue):D1229–D1236. doi: 10.1093/nar/gkt1064 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedCentralPubMedGoogle Scholar
  43. Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ (2003a) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268PubMedGoogle Scholar
  44. Zhang Z, Li X, Xiao Y, Luo M, Liu D, Huang S, Zhang F (2003b) Combining ability and heterosis between high strength lines and transgenic Bt (Bacillus thuringiensis) bollworm-resistant lines in upland cotton (Gossypium hirsutum L.). Agr Sci China 2:13–18Google Scholar
  45. Zhang Z, Hu M, Zhang J, Liu D, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61CrossRefGoogle Scholar
  46. Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348CrossRefGoogle Scholar
  47. Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y (2013) Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in china. PLoS One 8:e57220PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lianguang Shang
    • 1
  • Qingzhi Liang
    • 1
    • 4
  • Yumei Wang
    • 2
  • Xiaocui Wang
    • 1
  • Kunbo Wang
    • 3
  • Abdugheni Abduweli
    • 1
  • Lingling Ma
    • 1
  • Shihu Cai
    • 1
  • Jinping Hua
    • 1
  1. 1.Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
  2. 2.Institute of Cash CropsHubei Academy of Agricultural SciencesWuhanChina
  3. 3.Institute of Cotton ResearchChinese Academy of Agricultural Sciences/State Key Laboratory of Cotton BiologyAnyangChina
  4. 4.South Subtropical Crops Research InstitutesChinese Academy of Tropical Agricultural SciencesZhanjiangChina

Personalised recommendations