Euphytica

, Volume 205, Issue 1, pp 95–102 | Cite as

Identification and mapping of a novel blast resistance gene Pi57(t) in Oryza longistaminata

  • Peng Xu
  • Liying Dong
  • Jiawu Zhou
  • Jing Li
  • Yu Zhang
  • Fengyi Hu
  • Shufang Liu
  • Qun Wang
  • Wei Deng
  • Xianneng Deng
  • Didier Tharreau
  • Qinzhong Yang
  • Dayun Tao
Article

Abstract

Oryza longistaminata with strong resistance to biotic and abiotic stress was regarded as an excellent gene pool for Asian cultivated rice improvement. Thus, mining and utilization of favorable genes/alleles from O. longistaminata would be important in breeding for Oryza sativa by broadening its genetic basis. To explore blast resistance genes from O. longistaminata, RD23, an indica cultivar from Thailand, was crossed with an accession of O. longistaminata and a set of BC3F7 introgression lines (ILs) was raised. The ILs were screened for blast resistance in natural blast nursery, and three ILs exhibiting high level of resistance to blast disease were obtained. Using a BC4F2 population of IL-E1454/RD23, a novel dominant blast resistant gene, designated as Pi57(t), was mapped on rice chromosome 12 flanked by SSR markers RM27892 and RM28093 within 1.0 cM. Pi57(t) conferred a broad-spectrum resistance to Magnaporthe oryzae isolates collected from Yunnan, P. R. China, and the resistant spectrum was distinguished from five known blast R genes located on chromosome 12. Our results suggest that Pi57(t) would be a promising gene for rice improvement in Yunnan, P. R. China.

Keywords

Magnaporthe oryzae Oryza longistaminata Resistance gene 

References

  1. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pik-m-specific rice blast resistance. Genetics 180:2267–2276PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868PubMedCrossRefGoogle Scholar
  3. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147PubMedCrossRefGoogle Scholar
  4. Bonman JM, Vergel De Dios TI, Khin MM (1986) Physiological specialization of Pyricularia oryzae in the Philippines. Plant Dis 70:767–769CrossRefGoogle Scholar
  5. Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–37PubMedCrossRefGoogle Scholar
  6. Bryan GT, Wu KS, Farrall L, Jia YL, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZZ, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804PubMedCrossRefGoogle Scholar
  8. Couch BC, Kohn LM (2002) Multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693PubMedCrossRefGoogle Scholar
  9. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fomba SN, Taylor DR (1994) Rice blast in West Africa: its nature and control. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International and IRRI, Wallingford, pp 343–355Google Scholar
  11. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a praline-containing protein confers durable disease resistance in rice. Science 325:998–1001PubMedCrossRefGoogle Scholar
  12. Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425PubMedCrossRefGoogle Scholar
  13. Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100:4050–4054PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055PubMedCrossRefGoogle Scholar
  15. Jeon JS, Chen D, Yi GH, Wang GL, Ronald PC (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics 269:280–289PubMedGoogle Scholar
  16. Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177PubMedCrossRefGoogle Scholar
  17. Jia Y, Wang Z, Fjellstrom RG, Moldenhauer KA, Azam MA, Correll J, Lee FN, Xia Y, Rutger J (2004) Rice Pi-ta confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology 297:296–301CrossRefGoogle Scholar
  18. Khush GB, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newslett 7:121–122Google Scholar
  19. Lander ES, Green P (1987) Construction of multilocus geneticlinkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lee SK, Song MY, Seo YU, Kim HY, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon J (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 181:1627–1638PubMedCentralPubMedCrossRefGoogle Scholar
  21. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  22. Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479PubMedCrossRefGoogle Scholar
  23. Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, pp 109–201Google Scholar
  24. Pan QH, Hu ZD, Takatoshi T, Wang L (2003) Fine mapping of the blast resistance gene Pi15, linked to Pii, on rice chromosome 9. Acta Botanica Sinica 45:871–877Google Scholar
  25. Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914PubMedCentralPubMedCrossRefGoogle Scholar
  26. Roychowdhury M, Jia YL, Cartwright RD (2012) Structure, function, and co-evolution of rice blast resistance genes. Acta Agron Sin 38:381–393CrossRefGoogle Scholar
  27. Saleh D, Xu P, Shen Y, Li C, Adreit H, Milazzo J, Ravigne V, Bazin E, Notteghem JL, Fournier E, Tharreau D (2012) Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol Ecol 21:1330–1344PubMedCrossRefGoogle Scholar
  28. Sallaud C, Lorieux M, Roumen E, Tharreau D (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803PubMedGoogle Scholar
  29. Silue D, Notteghem JL (1990) Production of perithecia of Magnaporthe grisea on rice plants. Mycol Res 94:1151–1152CrossRefGoogle Scholar
  30. Silué D, Notteghem JL, Tharreau D (1992) Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 82:577–580CrossRefGoogle Scholar
  31. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  32. Tao D, Sripichitt S (2000) Preliminary report on transfer traits of vegetative propagation from wild rice species to Oryza sativa via distant hybridization and embryo rescue. Kasetsart J 34:1–11 (Nature sciences)Google Scholar
  33. Valent B, Crawford MS, Weaver CG, Chumley FG (1986) Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia oryzae). Iowa State J of Res 60:569–594Google Scholar
  34. Vales M, Vilaplana J, Kouman K, Vodouhe S (1985) Study of the complete resistance to Pyricularia oryzae Cav. in Oryza sativa X O. longistaminata hybrids and in their O. longistaminata parent. Agron Trop 40:148–156Google Scholar
  35. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64PubMedCrossRefGoogle Scholar
  36. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedCentralPubMedGoogle Scholar
  37. Yang Q, Lin F, Wang L, Pan Q (2009) Identification and mapping of Pi41, a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11. Theor Appl Genet 118:1027–1034PubMedCrossRefGoogle Scholar
  38. Zeigler RS, Tohme J, Nelson J, Levy M, Correa F (1994) Linking blast population analysis to resistance breeding: A proposed strategy for durable resistance. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International and IRRI, Wallingford, pp 16–26Google Scholar
  39. Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and charactrization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334PubMedCrossRefGoogle Scholar
  40. Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Peng Xu
    • 1
  • Liying Dong
    • 2
  • Jiawu Zhou
    • 1
  • Jing Li
    • 1
  • Yu Zhang
    • 1
  • Fengyi Hu
    • 1
  • Shufang Liu
    • 2
  • Qun Wang
    • 2
  • Wei Deng
    • 1
  • Xianneng Deng
    • 1
  • Didier Tharreau
    • 3
  • Qinzhong Yang
    • 2
  • Dayun Tao
    • 1
  1. 1.Food Crops Research InstituteYunnan Academy of Agricultural Sciences (YAAS)KunmingPeople’s Republic of China
  2. 2.Agricultural Environment & Resources Research InstituteYunnan Academy of Agricultural Sciences (YAAS)KunmingPeople’s Republic of China
  3. 3.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)UMR BGPIMontpellierFrance

Personalised recommendations