, Volume 204, Issue 2, pp 243–256 | Cite as

Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review

  • Herbert van der VossenEmail author
  • Benoît Bertrand
  • André Charrier


Arabica coffees (60 % of current world coffee production) are generally sold at considerably better prices than robustas on account of superior beverage quality. However, costs of production are much higher, mainly due to more stringent demands for soil and climatic conditions, crop management, primary processing and control of several pests and diseases including the potentially very destructive coffee leaf rust (CLR) and berry disease (CBD). Breeding for disease resistance in combination with vigour, productivity and quality started in the early 1920s in India, but especially in the second half of the 20th century comprehensive breeding programmes have been implemented in several other coffee producing countries. Many of the resulting CLR- and CBD + CLR-resistant cultivars (true-breeding lines and F1 hybrids) meet the required standards of profitable and sustainable crop production. Challenges of more recent date include limited access to additional genetic resources of Coffea arabica, breakdown of host resistance to CLR, aggravating insect pest problems and the increasingly negative impact of climate change on arabica coffee production worldwide. This review discusses prospects of breeding and disseminating next generation (hybrid) cultivars of arabica coffee for sustainable coffee production under changing conditions of diseases, pests and climate. International networking on coffee breeding will facilitate sharing of resources (financial, genetic) and scientific information, application of genomics-assisted selection technologies, and pre-breeding for specific characters. Breeding and multiplication of new cultivars well adapted to the local environment will continue to be carried out at national or regional levels. A tree crop like arabica coffee does not lend itself to centralized variety development and dissemination on a global scale.


Coffea arabica Genetic resources Durable host resistance Diseases Pests Beverage quality Drought tolerance Genomics-assisted breeding Hybrid cultivars Sustainable production Climate change 



Biodiversity Conservation and Research Institute, Ethiopia


Centro Agronómico Tropical de Investigacion y Enseñanza, Costa Rica


Central Coffee Research Institute, India


Centro Nacional de Investigaciones de Café, Colombia


Centro d’Investigaçao das Ferrugens do Cafeeiro, Portugal


Centre de Coopération Internationale en Recherche Agronomique pour le Développement, France


Coffee Research Foundation, Kenya


Food and Agriculture Organization of the United Nations


Federation National de Cafeteros, Colombia


Instituto Agronômico de Campinas, SP Brasil


Instituto Agronômico do Paraná, Brasil


Institute of Agricultural Research/Jimma Agricultural Research Centre, Ethiopia


Indonesian Coffee and Cocoa Research Institute


International Coffee Genome Network


International Coffee Organization, London, UK


Insttituto de Inveastigaçao Cientifica Tropical, Portugal


Institut de Recherche pour le Développement (ex ORSTOM), France


Office de la Recherche Scientifique Outre-Mer


Programa cooperativo regional para el desarollo technologico y Modernization de la Caficultura, Centro America


Tanzania Coffee Research Institute


Universidade Federal de Viçosa, MG Brasil


World Coffee Research, USA


  1. Andrade AC (2015) Coffee is not an orphan genomics crop (we did it!): time to translate genomic tools into fast breeding. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  2. Anzueto F, Bertrand B, Sarah JL, Eskes AB, Decazy B (2001) Resistance to Meloidogyne incognita in Ethiopian Coffea arabica origins: detection and study of resistance transmission. Euphytica 118:1–8CrossRefGoogle Scholar
  3. Avelino J, Barboza B, Araya JC, Fonseca C, Davrieux F, Guyot B, Cilas C (2005) Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs in Costa Rica, Orosi and Santa Maria de Dota. J Sci Food Agric 85:1869–1876CrossRefGoogle Scholar
  4. Bellachew B (1997) Arabica coffee breeding in Ethiopia: a review. Proceedings of the 17th ASIC international conference on coffee science, Nairobi, Kenya, pp 406–414Google Scholar
  5. Bellachew B, Sacko JC (2009) Coffee genetic resources under severe threat from genetic erosion in the centres of origin and diversity: an urgent need for conservation measures. Proceedings of the 22nd ASIC international conference on coffee science, Campinas, SP, Brazil, 14–19 Sep 2008, pp 1487–1496Google Scholar
  6. Bertrand, B, Aguilar G, Santacreo R, Anthony F, Etienne H, Eskes AB, Charrier A (1997) Comportement d’hybrides F1 de Coffea arabica pour la vigeur, la production et la fertilité en Amérique Centrale. Proceedings of the 17th ASIC international conference on coffee science, Nairobi, Kenya, pp 415–423Google Scholar
  7. Bertrand B, Cilas C, Hervé G, Anthony F, Etienne H, Villain L (1998) Relations entre les populations des nématodes Meloidogyne exigua et Pratylenchus sp. dans les racines de Coffea arabica au Costa Rica. Plant Rech Dévelop 5:279–284Google Scholar
  8. Bertrand B, Aguilar G, Santacreo R, Anzueto F (1999) El mejoramiento genético en América Central. In: Bertrand B, Rapidel B (eds) Desafio de la caficultura centroamericana. IICA, San José, pp 407–456Google Scholar
  9. Bertrand B, Vaast Ph, Alpizar E, Etienne H, Davrieux F, Charmetant P (2006) Comparison of bean biochemical composition and beverage quality of arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiol 26:1239–1248PubMedCrossRefGoogle Scholar
  10. Bertrand B, Alpizar E, Llara L, SantaCreo R, Hidalgo M, Quijano JM, Charmetant P, Montagnon C, Georget F, Etienne H (2011) Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line varieties. Euphytica 181(2):147–158CrossRefGoogle Scholar
  11. Bertrand B, Montagnon C, Georget F, Charmetant P, Etienne H (2012a) Création et diffusion de variétés de caféiers Arabica: quelles innovations variétales? Cah Agric 21:77–88Google Scholar
  12. Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joét T (2012b) Climatic factors directly impact the volatile organic compound fingerprint in green arabica coffee bean as well as coffee beverage quality. Food Chem 135(4):2575–2583PubMedCrossRefGoogle Scholar
  13. Brando CHJ (2014) Drought and damage to coffee production in Brazil. P&A Coffee Newsletter Coffidential 8(85)Google Scholar
  14. Carvalho A (1988) Principles and practice of coffee plant breeding for productivity and quality factors: Coffea arabica. In: Clarke RJ, Macrae R (eds) Coffee. Agronomy, vol 4. Elsevier Applied Science, London and New York, pp 129–165Google Scholar
  15. Carvalho A, Ferwerda FP, Frahm-Lelieveld JA, Medina DM, Mendes AJT, Monaco LC (1969) Coffee. In: Ferwerda FP, Wit F (eds). Outlines of perennial crop breeding in the tropics. Miscellaneous Papers No. 4. Agricultural University, Wageningen, pp 189–241Google Scholar
  16. Charrier A (1978) Etude de la structure et de la variabilité des caféiers: Coffea arabica. Bulletin no. 14, IFCC-ORSTOM, Paris, FranceGoogle Scholar
  17. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71PubMedCentralPubMedCrossRefGoogle Scholar
  18. Cristancho MA, Rozo Y, Escobar C, Rivillas CA, Gaitán AL (2012) Outbreak of coffee leaf rust (Hemileia vastatrix) in Colombia. New Dis Rep 25:19CrossRefGoogle Scholar
  19. DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16:1–6CrossRefGoogle Scholar
  20. DaMatta FM (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81CrossRefGoogle Scholar
  21. Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLOS One 7(11): e47981Google Scholar
  22. Decazy F, Avelino J, Guyot B, Perriot JJ, Pineda C, Cilas C (2003) Quality of different Honduran coffees in relation to several environments. J Food Sci 68:2356–2361CrossRefGoogle Scholar
  23. Denoeud F et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184PubMedCrossRefGoogle Scholar
  24. Dulloo DE, Charrier A, Dussert S, Anthony F, Tesfaye S, Rakotomalala JJ, Agwanda C, Legnaté N (2001) Conservation of coffee genetic resources: constraints and opportunities. Proceedings of the 19th ASIC international conference on coffee science, Trieste, Italy, 14–18 May 2001Google Scholar
  25. Egonyu JP, Kucel P, Kangire A, Sewaya F, Nkugwa C (2009) Impact of the black twig borer on Robusta coffee in Mukono and Kayunga districts, central Uganda. J Anim Plant Sci 3:163–169Google Scholar
  26. Engelmann F, Dulloo ME, Astorga C, Dussert S, Anthony F (2007) Conserving coffee genetic resources: complementary strategies for ex situ conservation of coffee (Coffea arabica L.) genetic resources. A case study in CATIE, Costa Rica. Bioversity International, Rome, ItalyGoogle Scholar
  27. Etienne H, Bertrand B, Montagnon C, Landey RB, Dechamp E, Jourdan I, Alpizar E, Malo E, Georget F (2012) Un exemple de transfert de technologie réussi dans le domaine de la micropropagation: la multiplication de Coffea arabica par embryogenese somatique. Cah Agric 21(2–3):115–124Google Scholar
  28. FAO (2012) Statistical Yearbook 2012.
  29. Fernandez D, Tisserant E, Talhinas P, Azinheira H, Vieira A, Petitot AS, Loureiro A, Poulain J, Da Silva C, Silva MC, Duplessis S (2012) 454-Pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix rerveals in-planta expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol Plant Pathol 13(1):17–37PubMedCrossRefGoogle Scholar
  30. Figueiredo A, Loureiro A, Batista D, Monteiro F, Várzea V, Pais MS, Gichuru EK, Silva MC (2013) Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Research Notes 6: 388Google Scholar
  31. Fridell G (2014) Coffee. Polity Press, CambridgeGoogle Scholar
  32. Gast F (2014) CENICAFE's sustainability strategy of Café de Colombia. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8 Sep 2014.
  33. Georget F, Alpizar E, Courtel P, Hidalgo JM, Dechamp E, Poncon C, Etienne H, Bertrand B (2015a) Arabica F1 hybrid seed production based on genetic male sterility. Proceedings if the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  34. Georget F, Courtel P, Malo Garcia E, Alpizar E, Hidalgo JM, Dechamp E, Poncon C, Bertand B, Etienne H (2015b) A potential alternative for commercial propagation of C. arabica F1 hybrids: somatic embryo-derived nursery plantlets can be propagated via rooted cuttings. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  35. Gichimu BM, Gichuru EK, Mamati GE, Nyende AB (2014) Occurrence of Ck-1 gene conferring resistance to coffee berry disease in Coffea arabica cv. Ruiru 11 and its parental genotypes. J Agric Crop Res 2(3):51–61Google Scholar
  36. Gichuru EK, Agwanda CO, Combes MC, Mutitu EW, Ngugi ECK, Bertrand B et al (2008) Identification of molecular markers linked to a gene conferring resistance to coffee berry disease (Colletotrichum kahawae) in Coffea arabica L. Plant Pathol 57(6):1117–1124CrossRefGoogle Scholar
  37. Gongora CE, Molina D, Acuña R (2015) Heterologous gene approaches to introduce resistance to coffee insects and diseases in Colombia. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  38. Guerreiro Filho O (2006) Coffee leaf miner resistance. Braz J Plant Physiol 18:109–117CrossRefGoogle Scholar
  39. Guillaumet JL, Hallé F (1967) Etude da la variabilité du Coffea arabica dans son aire d’origine. Rapport ORSTOM, ParisGoogle Scholar
  40. Guyot B, Gueule D, Manez JC, Perriot JJ, Giron J, Villain L (1996) Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. Plant Rech Dévelop 3:272–280Google Scholar
  41. Haarer AE (1962) Modern coffee production. Leonard Hill, LondonGoogle Scholar
  42. Heffner EL, Sorrels ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  43. Hein L, Gatzweiler F (2006) The economic value of coffee (Coffea arabica) genetic resources. Ecol Econ 60:176–185CrossRefGoogle Scholar
  44. Herrera JC, Combes MC, Cortina H, Alvarado G, Lashermes Ph (2002a) Gene introgression into Coffea arabica by way of triploid hybrids (C. arabica x C. Canephora). Heredity 89:488–494PubMedCrossRefGoogle Scholar
  45. Herrera JC, Combes MC, Anthony F, Charrier A, Lashermes Ph (2002b) Introgression into the allotetraploid coffee (Coffea arabica L.): segrtegation and recombinationof the C. canephora genome in the tetraploid interspecific hybrid (C. arabica x C. canephora). Theor Appl Genet 104:661–668Google Scholar
  46. Herrera JC, Dereeper A, Posada H, Combes MC, Lashermes Ph (2015) Inferring the introgressive status of the natural Timor Hybrid (Coffea sp.) based on single nucleotide polymorphisms as deduced from RNAseq data analysis. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  47. Huibers RP, Loonen AEH, Gao D, Van den Ackerveken G, Visser RGF, Bai Y (2013) Powdery mildew resistance in tomato by impairment of SIPMR4 and SIDMR1. PLoS ONE 8(6):e67467PubMedCentralPubMedCrossRefGoogle Scholar
  48. ICGN (2014a) International Coffee Genome Network.
  49. ICGN (2014b) Report 7th Coffee genomics workshop held at the XXII plant and animal genome meeting, San Diego, California, 11–15 Jan 2014.
  50. ICO (2014) World coffee trade 1963–2013: a review of the markets, challenges and opportunities for the sector.
  51. Illy A, Viani R (eds) (2005) Espresso coffee: the science of quality, 2nd edn. Elsevier Academic Press, Amsterdam, London, New YorkGoogle Scholar
  52. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177CrossRefGoogle Scholar
  53. Jaramillo J, Borgemeister C, Baker P (2006) Coffee berry borer Hypothenemus hampei (Coleoptera; Curculionidae): searching for sustaianble control strategies. Bull Entomol Res 96:223–233PubMedCrossRefGoogle Scholar
  54. Joët T (2015) Coffee quality and metabolic pathways of the aroma/flavour precursors. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–14 Sep 2014 (in press)Google Scholar
  55. Joët T, Pot D, Ferreira LC, Dussert S, Marraccini P (2012) Identification des déterminants moléculaires de la qualité du café par approches de génomique fonctionelle. Une revue. Cah Agric 21(2–3):125–133Google Scholar
  56. Kilambo DL, Mtenga DJ, Ng’Homa NM, Ngomou RS, Teri JM, Mlwilo BL (2015) A decade of contributing to a profitable and sustainable coffee industry in Tanzania: the arabica and robusta improvement programmes. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–14 Sep 2014 (in press)Google Scholar
  57. Labouisse JP, Adolphe C (2012) Conservation et gestion des ressources génétiques du caféier arabica (Coffea arabica L.): un défi pour l’Éthiopie. Cah Agric 21(2-3):98–105Google Scholar
  58. Labouisse JP, Bellachew B, Kotecha S, Bertrand B (2008) Current status of coffee (Coffea arabica) genetic resources in Ethiopia: implications for conservation. Genet Res Crop Evol 55:1079–1093CrossRefGoogle Scholar
  59. Läderach P, Lundy M, Jarvis A, Ramirez J, Pereze Portilla E, Schepp K, Eitzinger A (2010) Impact of climate change on coffee production and coffee-supply chains. In: Leal W (ed) The economic, social and political elements of climate change. Springer-Verlag, Berlin, pp 703–724Google Scholar
  60. Lashermes Ph, Combes MC, Dereeper A, Hueber Y (2015). Genomic insights into the origin and diversification of Coffea arabica: implications for coffee breeding. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  61. Lashermes Ph, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Genet 261:266–359CrossRefGoogle Scholar
  62. Lashermes Ph, Combes MC, Ansaldi C, Gichuru E, Noir S (2011) Analysis of alien introgression in coffee tree (Coffea arabica L.). Mol Breeding 27(2):223–232Google Scholar
  63. Lejeune JBH (1958) Rapport au Gouvernement Impérial d’Ethiopie sur la production caféiers. FAO Rapport PEAT 797, RomeGoogle Scholar
  64. Leroy T, Henry AM, Royer M, Altosar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389Google Scholar
  65. Magesa JM, Mushi IK, Shayo G. NG’Homa NM, Mdemu S, Tarimo E, Teri J (2013) Strengthening producer organizations to speed up the multiplication of improved hybrid coffee varieties in Tanzania. Proceedings of the 24rd ASIC international conference on coffee science, San José, Costa Rica, 11–16 Nov 2012. pp 711–720Google Scholar
  66. Mahé L, Várzea VMP, Le Pierrès D, Combes MC, Lashermes Ph (2007) A new source of resistance against coffee leaf rust from New-Caledonian natural interspecific hybrids between Coffea arabica and Coffea canephora. Plant Breed 126:638–641CrossRefGoogle Scholar
  67. Mahé L, Combes MC, Várzea VMP, Guilaumon C, Lashermes Ph (2008) Development of sequence characterized DNA markers linked to leaf rust (Hemileia vastatrix) resistance in coffee (Coffea rabica L). Mol Breed 21:105–113CrossRefGoogle Scholar
  68. Maro GP, Teri JM, Magina FL, Nkya EO (2013) Effect of shade on yields of selected improved hybrid Coffea arabica varieties in Tanzania. Proceedings of the 24th ASIC international conference on coffee science, San José, Costa Rica, 11–16 Nov 2012. pp 1203–1207Google Scholar
  69. Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbet S, Ramos HJO, Montagnon C, Vieira LGE, Leroy T, Silva VA, Rodrigues G, Andrade C (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85PubMedCentralPubMedCrossRefGoogle Scholar
  70. Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbet S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63(1):4191–4212PubMedCentralPubMedCrossRefGoogle Scholar
  71. Meyer FG, Fernie LM, Narasimhaswamy RL, Monaco LC, Greathead DJ (1968) FAO Coffee Mission to Ethiopia 1964–1965. FAO RomeGoogle Scholar
  72. Mitchell HW (1988) Cultivation of the arabica coffee tree. In: Clarke RJ, Macrae R (eds). Coffee vol. 4: Agronomy. Elsevier Applied Science, London and New York. pp 43–90Google Scholar
  73. Moncada P, Tovar E, Montoya JC, Gonzales A, Spindel J, McCouch S (2015) A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield, plant height and bean size. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  74. Mueller L, Strickler S, Domingues D, Pereira, L, Andrade A, Marraccini P, Ming R, Wai J, Albert V, Guiliano G, Descombes P, Moine D, Guyot R, Poncet V, Hamon S, Tranchant C, De Kochko A, Lepelley M, Rigeoreau M, Crouzillat D (2015) Towards a better understanding of the Coffea arabica genome structure. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)Google Scholar
  75. Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 85:131–139CrossRefGoogle Scholar
  76. Nagai Ch, Rakotomalala JJ, Katahira R, Li Y, Yamagata K, Ashihara H (2008) Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica 164:133–142CrossRefGoogle Scholar
  77. Neill J (2013) Central American coffee rust crisis: no easy answers. STIR tea & coffee industry international July/August 2013, pp 46–49Google Scholar
  78. Opile WR, Agwanda CO (1993) Propagation and distribution of cultivar Ruiru 11: a review. Kenya Coffee 58:1496–1508Google Scholar
  79. Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12PubMedCentralPubMedCrossRefGoogle Scholar
  80. Pendergrast M (1999) Uncommon Grounds: the history of coffee and how it transformed our world. Basic Books, Perseus Books Groups, New YorkGoogle Scholar
  81. Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, Lashermes Ph (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317PubMedCrossRefGoogle Scholar
  82. Privat I, Bardil A, Gomez AB, Severac D, Dantec C, Fuentes I, Mueller L, Joët T, Pot D, Foucrier S, Dussert S, Leroy T, Journot L, de Kochko A, Campa C, Combes MC, Lashermes Ph, Bertrand B (2011) The “Puce Café” Project: the first 15 k Coffee Microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits. BMC Genom 12:5. doi: 10.1186/1471-2164-12-5 CrossRefGoogle Scholar
  83. Rodrigues Jr CJ, Várzea V, Silva MC, Guerra-Guimarães L, Rochetta M, Marques DV. (2000) Recent advances on coffee leaf rust. Proceedings of the international scientific symposium on coffee, Bangalore, India, 4 Dec 2000. pp 179 –193Google Scholar
  84. Setotaw TA, Texeira Caixeta E, Fereire Pena G, Zambolim EM, Pereira AA, Sakiyama NS (2010) Breeding potential and genetic diversity of “Hibrido do Timor” coffee evaluated by molecular markers. Crop Breed Appl Biotechnol 10:298–304CrossRefGoogle Scholar
  85. Silva MC, Várzea V, Guerra-Guimarães L, Gil Azinheira H, Fernandez D, Petitot AS, Bertrand B, Lashermes Ph, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147CrossRefGoogle Scholar
  86. Silvarolla MB, Mazzafera P, Fazuoli LC (2004) A naturally decaffeinated arabica coffee. Nature 429:826PubMedCrossRefGoogle Scholar
  87. Sylvain PG (1955) Some observations on Coffea arabica in Ethiopia. Turrialba 5:37–53Google Scholar
  88. Teri J, Kilambo D, Nyange NE, Nzallawahe TS, Chipungahelo GS, Kipokola TP, Kullaya IK (2004) Improved arabica varieties for the benefit of Tanzanian coffee growers. Proceedings of the 20th ASIC international conference on coffee science, Bangalore, India. pp 1187–1191Google Scholar
  89. Thomas AS (1942) The wild arabica coffee on the Boma Plateau of Anglo-Egyptian Sudan. Emp J Exp Agric 10:207–212Google Scholar
  90. Vaast Ph, Bertrand B, Perriot JJ, Guyot B, Génard M (2006) Fruit thinning and shade improves bean characteristics and beverage quality of coffee (Coffea arabica) under optimal conditions. J Sci Food Agric 86:197–204CrossRefGoogle Scholar
  91. Van der Vossen HAM (1985) Coffee selection and breeding. In: Clifford C, Willson J (eds) Coffee botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 48–96Google Scholar
  92. Van der Vossen HAM (2001) Coffee breeding practices. In: Clarke RJ, Vitzthum OG (eds) Coffee: recent developments. Blackwell Science Ltd, Oxford, pp 184–201CrossRefGoogle Scholar
  93. Van der Vossen HAM (2005) A critical analysis of the agronomic and economic sustainability of organic coffee production. Expl Agric 41:449–473CrossRefGoogle Scholar
  94. Van der Vossen HAM (2009) The cup quality of disease-resistant cultivars of arabica coffee (Coffea arabica). Expl Agric 45:323–332CrossRefGoogle Scholar
  95. Van der Vossen HAM (2013) Improving water productivity in arabica coffee. Proceedings of the 24rd ASIC international conference on coffee science, San José, Costa Rica, 11–16 Nov 2012. pp 711–720Google Scholar
  96. Van der Vossen HAM, Browning G (1978) Prospects of selecting genotypes of Coffea arabica L. which do not require tonic sprays of fungicide for increased leaf retention and yield. J Hortic Sci 53:225–233Google Scholar
  97. Van der Vossen HAM, Walyaro DJ (2009) Additional evidence for oligogenic inheritance of durable host resistance to coffee berry disease (Colletotrichum kahawae) in arabica coffee (Coffea arabica L.). Euphytica 165:105–111CrossRefGoogle Scholar
  98. Venkatesha MG, Dinesh AS (2012) The white stemborer Xylotrechus quadripes (Coleoptera: Cerambycidae): bioecology, status and management. Int J Trop Insect Sci 31:177–188CrossRefGoogle Scholar
  99. Vieira A, Talhinas P, Loureiro A, Duplessis S, Fernandez D, Silva MC, Paulo OS, Azinheira H (2011) Validation of RT-qPCR reference genes for in planta expression studies in Hemileira vastatrix, the causal agent of coffee leaf rust. Fungal Biol 115:891–901PubMedCrossRefGoogle Scholar
  100. Visser RGF, Meijboom P, Bai Y (2015). Improving pathogen resistance by exploiting plant susceptibility genes. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–14 Sep 2014. (in press)Google Scholar
  101. Walyaro DJ (1983) Considerations in breeding for improved yield and quality (Coffea arabica L). Doctoral Thesis, Agricultural University WageningenGoogle Scholar
  102. WCR (2014) World coffee research annual report 2012–2013.
  103. Wintgens JN (ed) (2009) Coffee: growing, processing, sustainable production. Wiley-VCH Verlag, WeinheimGoogle Scholar
  104. Wrigley G (1988) Coffee., Tropical agriculture series, Longmans Scientific and Technical, HarlowGoogle Scholar
  105. Zambolim L, Zambolim EM, Várzea VMP (eds) (2005) Durable resistance to coffee leaf rust. Proceedings of the 1st international workshop on coffee leaf rust at the Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG Brazil, 26–28 Sep 2005Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Herbert van der Vossen
    • 1
    Email author
  • Benoît Bertrand
    • 1
    • 2
  • André Charrier
    • 1
  1. 1.Association for Science and Information on Coffee (ASIC)ParisFrance
  2. 2.CIRAD, UMR RPBMontpellierFrance

Personalised recommendations