, Volume 204, Issue 3, pp 693–709 | Cite as

Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance

  • Omar Idrissi
  • Chafika Houasli
  • Sripada M. Udupa
  • Ellen De Keyser
  • Patrick Van Damme
  • Jan De Riek


Lentil (Lens culinaris Medik.) is usually grown under rainfed environments and often encounters drought stress from limited rainfall. Little information is available about shoot and root traits in association with drought tolerance. We studied variability for root and shoot traits related to drought tolerance using an F6–8 population of 133 recombinant inbred lines (RILs) from the cross ILL6002 × ILL5888. We found important variation between genotypes and also high variation in heritability values for root and shoot traits at 38 days after sowing the parents and RILs under both well-watered and drought-stressed treatments during two consecutive seasons in the greenhouse. The higher heritability values were obtained under drought stress treatment and suggest that selection in water-limited environments would be more effective in achieving genetic gains. Drought had reduced trait values, except root–shoot ratio that was likely to be enhanced underlying the importance of this trait for drought tolerance. The quantitative and continuous distributions of variation are the evidence for polygenic control of these traits and the possibility of mapping the quantitative trait loci (QTL). Statistically significant associations between root and shoot traits such as dry shoot biomass and chlorophyll content were noted, highlighting the reliability of indirect selection for underground traits (root) based on these aboveground traits in breeding programs. Significant correlations and regressions were demonstrated between dry root biomass, lateral root number, root surface area, dry shoot biomass, root–shoot ratio, chlorophyll content and drought tolerance as estimated by wilting severity from limited water supply. This shows the importance of a well-developed root system and early biomass development for drought tolerance. Identification and mapping of QTL related to studied traits in this population would be a first step for starting marker-assisted selection.


Lentil Root and shoot traits Genetic variability Drought tolerance 



The authors thank the Islamic Development Bank for the funding support. We also thank Dr. Fred J. Muehlbauer from USDA-ARS, Washington State University, Pullman, USA and Dr. Rebecca J. McGee from Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Washington State University for kindly providing the genetic material used in this study.

Conflict of interest

The authors of this study declare that they have no conflict of interest.


  1. Abdelhamid MT (2010) Efficient root system in legume crops to stress environments. In: Yadav SS et al (eds) Climate change and management of cool season grain legume crops. Springer Science Business Media, Dordrecht. doi: 10.1007/978-90-481-3709-1_13 Google Scholar
  2. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with Image J. Biophotonics International 11(7):36–42. Accessed 16 Aug 2014
  3. Aswaf A, Blair M (2012) Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Mol Breed 30:681–695. doi: 10.1007/s11032-011-9654-y CrossRefGoogle Scholar
  4. Brensha W, Kantartzi SK, Meksem K, Grier RL, Barakat A, Lightfoot DA, Kassem MA (2012) Genetic analysis of root and shoot traits in the ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) population of soybean (Glycine max (L.) Merr.). J Plant Genome Sci 1(1):1–9. doi: 10.5147/jpgs.2012.0051 CrossRefGoogle Scholar
  5. Cichy K, Blair MW, Mendoza CHG, Snapp SS, Kelly JD (2009) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68CrossRefGoogle Scholar
  6. Cullis B, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393CrossRefGoogle Scholar
  7. Costa de Oliveira A, Varshney RK (2011) Introduction to root genomics. In: Costa de Oliveira A, Varshney RK (eds) Root genomics. Springer, Heidelberg. doi: 10.1007/978-3-540-85546-0 CrossRefGoogle Scholar
  8. Erskine W, Rihawi S, Capper BS (1990) Variation in lentil straw quality. Anim Feed Sci Technol 28(1–2):61–69. doi: 10.1016/0377-8401(90)90068-J CrossRefGoogle Scholar
  9. Erskine W, Muehlbauer FJ, Sarker A, Sharma B (2009) Introduction. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CAB International, Oxfordshire pp. 1–3CrossRefGoogle Scholar
  10. FAO (2012) FAOSTAT, FAO, Rome, Italy. Accessed 1 Aug 2014
  11. Gahoonia TS, Ali O, Sarker A, Rahman MM, Erskine W (2005) Root traits, nutrient uptake, multi-location grain yield and benefit–cost ratio of two lentil (Lens culinaris, Medikus.) varieties. Plant Soil 272:153–161. doi: 10.1007/s11104-004-4573-x CrossRefGoogle Scholar
  12. Gahoonia TS, Ali O, Sarker A, Nielsen NE, Rahman MM (2006) Genetic variation in root traits and nutrient acquisition of lentil genotypes. J Plant Nutr 29:643–655. doi: 10.1080/01904160600564378 CrossRefGoogle Scholar
  13. Gaur PM, Krishnamurthy L, Kashiwagi J (2008) Improving drought-avoidance root traits in chickpea (Cicer arietinum)—current status of research at ICRISAT. Plant Prod Sci 11(1):3–11CrossRefGoogle Scholar
  14. Grusak MA, Coyne CJ (2009) Variation for seed minerals and protein concentrations in diverse germplasm of lentil. Paper presented at North America Pulse Improvement Association, 20th Biennial Meeting, p. 11, Fort Collins, CO. 28–30 Oct. Accessed 20 Jan 2015
  15. Idrissi O, Houasli C, Nsarellah N (2013) Comparaison de lignées avancées de lentille sous stress hydrique durant la phase de floraison et formation des gousses. Nat Technol 8:53–61Google Scholar
  16. International Board for Plant Genetic Resources (IBPGR) and International Center for Agricultural Research in the Dry Areas (ICARDA) (1985) Lentil descriptors. Accessed 16 Aug 2014
  17. Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V, Serraj R (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146:213–222. doi: 10.1007/s10681-005-9007-1 CrossRefGoogle Scholar
  18. Kashiwagi J, Krishnamurthy L, Gaur PM, Shandra S, Upadhyaya HD (2014) Estimation of gene effects of the drought avoidance root characteristics in chickpea (C. arietinum L.). Field Crop Res 105(1–2):64–69. doi: 10.1016/j.fcr.2007.07.007 Google Scholar
  19. Kumar J, Basu DPS, Srivastava E, Chaturvedi SK, Nadarajan N, Kumar S (2012) Phenotyping of traits imparting drought tolerance in lentil. Crop Pasture Sci 63:547–554. doi: 10.1071/CP12168 CrossRefGoogle Scholar
  20. Kumar J, Strivastava E, Singh M (2013) Genetics of early growth vigour in lentil (Lens culinaris Medik.). J Genet 92:323–326PubMedCrossRefGoogle Scholar
  21. Lobet G, Pagès L, Draye X (2011) A novel image analysis toolbox enabling quantitative analyses of root system architecture. Plant Physiol 157:29–39PubMedCentralPubMedCrossRefGoogle Scholar
  22. Malhotra RS, Sarker A, Saxena MC (2004) Drought tolerance in chickpea and lentil-present status and future strategies. In: Rao SC, Ryan J (eds) Challenges and strategies for dryland agriculture., CSSA Special Publication no. 32Crop Science Society of America and American Society of Agronomy, Wisconsin pp 257–273Google Scholar
  23. Mia MW, Yamauchi A, Yano K, Kono Y (1996) Root system development of food legumes as affected by nodule formation. Rep Tokai Branch Crop Sci Soc Jpn 122:9–10Google Scholar
  24. Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H (2006) Joint modeling of additive and non-additive genetic line effects in single field trials. Theor Appl Genet 113:809–819PubMedCrossRefGoogle Scholar
  25. Ruta N (2008) Quantitative trait loci controlling root and shoot traits of maize under drought stress. Dissertation, Swiss Federal Institute of Technology ZurichGoogle Scholar
  26. Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2013) Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int J Agron (2013), Article ID 618926. doi: 10.1155/2013/618926
  27. Sarker A, Erskine W, Singh M (2005) Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genet Resour Crop Evol 52:89–97CrossRefGoogle Scholar
  28. Sarker A, Aydogan A, Chandra S, Kharrat M, Sabaghpour S (2009) Genetic enhancement for yield and yield stability. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CAB International, Oxfordshire pp 102–120Google Scholar
  29. Saxena MC (2009) Plant morphology, anatomy and growth habit. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses. CAB International, Oxfordshire, pp 1–3Google Scholar
  30. Sayed MAA (2011) QTL analysis for drought tolerance related to root and shoot traits in barley (Hordeum vulgare L.). Dissertation, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, Hohen Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität BonnGoogle Scholar
  31. Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch JH (2004) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crop Res 88:115–127CrossRefGoogle Scholar
  32. Singh DH, Dikshit HK, Singh RA (2013) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed 132:185–190. doi: 10.1111/pbr.12033 CrossRefGoogle Scholar
  33. Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186. doi: 10.1007/s10681-006-4723-8 CrossRefGoogle Scholar
  34. Thavarajah D, Thavarajah P, Sarker A, Materne M, Vandemark G, Shrestha R, Idrissi O, Hacikamiloglu O, Bucak B, Vandenber A (2011) A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chem 125:72–76CrossRefGoogle Scholar
  35. Vadez V, Rao S, Kholova J, Krishnamurthy L, Kashiwaji J, Ratnakumar P, Sharma KK, Bhatnagar-Mathur P, Basu PS (2008) Root research for drought tolerance in legumes: quo vadis ? J Food Legumes 21(2):77–85Google Scholar
  36. Wu W, Cheng S (2014) Root genetic research, an opportunity and challenge to rice improvement. Field Crop Res 165:111–124. doi: 10.1016/j.fcr.2014.04.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Omar Idrissi
    • 1
    • 2
  • Chafika Houasli
    • 2
  • Sripada M. Udupa
    • 3
  • Ellen De Keyser
    • 4
  • Patrick Van Damme
    • 1
    • 5
  • Jan De Riek
    • 4
  1. 1.Department of Plant Production, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Institut National de la Recherche Agronomique du Maroc (INRA), Centre Régional de SettatSettatMorocco
  3. 3.ICARDA-INRA Cooperative Research ProjectInternational Center for Agricultural Research in the Dry Areas (ICARDA)RabatMorocco
  4. 4.Institute for Agricultural and Fisheries Research (ILVO)-Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium
  5. 5.Faculty of Tropical AgriSciencesCzech University of Life Sciences PraguePragueCzech Republic

Personalised recommendations