, Volume 204, Issue 3, pp 627–634 | Cite as

Identification of QTL for adult plant resistance to stripe rust in Chinese wheat landrace Caoxuan 5

  • X. L. Zhou
  • Y. Zhang
  • Q. D. Zeng
  • X. M. Chen
  • D. J. Han
  • L. L. Huang
  • Z. S. Kang


Yellow (or stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important wheat disease worldwide. The development of wheat cultivars with adult plant resistance (APR) has been given increasing emphasis in recent years because of the reputed durability of APR compared to all-stage resistance. Wheat landrace Caoxuan 5 showed a high level of APR in field nurseries from 2008 to 2014. Bulked segregant analysis using resistance gene analog polymorphism, simple sequence repeat and sequence-tagged site markers identified molecular markers linked to resistance genes. A total of 176 F3 lines were evaluated for stripe rust response in field nurseries at two sites for 2 years. Broad sense heritability of APR in the population was estimated as 0.81. Inclusive composite interval mapping identified quantitative trait loci (QTL) QYrcx.nafu-3BS and QYrcx.nafu-6AL conferring adult plant resistance and they explained 17.3–38.1 % and 9.7–19.8 % of the phenotypic variations, respectively. Based on molecular markers, both QTL appear to be different from previously identified stripe rust resistance genes. The resistance QTL and their molecular markers identified in Caoxuan 5 should be useful in breeding for stripe rust resistance.


Durable resistance Quantitative trait locus Triticum aestivum Puccinia striiformis f. sp. tritici Yellow rust 



This study was supported by the National Key Basic Research Program of China (2013CB127700), the National Natural Science Foundation of China (31201497), and by the 111 Project from the Chinese Ministry of Education (No. B07049). We are grateful to the review of this manuscript by Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, Australia.


  1. Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2013) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 33:385–399CrossRefGoogle Scholar
  2. Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major resistance gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099CrossRefGoogle Scholar
  3. Brown JK, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541PubMedCrossRefGoogle Scholar
  4. Chen XM (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627CrossRefGoogle Scholar
  5. Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101CrossRefGoogle Scholar
  6. Cheng P, Xu LS, Wang MN, See DR, Chen XM (2014) Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet 127:2267–2277PubMedCrossRefGoogle Scholar
  7. Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973PubMedCrossRefGoogle Scholar
  8. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefGoogle Scholar
  9. Hao YF, Chen ZB, Wang YY, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411PubMedCrossRefGoogle Scholar
  10. Hovmøller MS (2007) Sources of seedling and adult plant resistance to Puccinia striiformis f. sp. tritici in European wheats. Plant Breed 126:225–233CrossRefGoogle Scholar
  11. Khlestkina EK, Röder MS, Unger O, Meinel A, Börner A (2007) More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinina striiformis) in wheat. Euphytica 153:1–10CrossRefGoogle Scholar
  12. Kosambi DD (1944) The estimation of map distance from recombination values. Annu Eugen 12:172–175CrossRefGoogle Scholar
  13. Lillemo M, Asalf B, Singh R, Huerta-Espino J, Chen X, He Z, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166PubMedCrossRefGoogle Scholar
  14. Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar express. Theor Appl Genet 118:631–642PubMedCrossRefGoogle Scholar
  15. Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Dep Agric Tech Bull No. 1788Google Scholar
  16. Lowe I, Jankuloski L, Chao S, Chen XM, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157PubMedCrossRefGoogle Scholar
  17. Lu YM, Lan CX, Liang SS, Zhou XC, Liu D, Zhou G, Lu QL, Jing JX, Wang MN, Xia XC, He ZH (2009) QTL mapping for adult plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359PubMedCrossRefGoogle Scholar
  18. McIntosh RA, Yamazaki YY, Dubcovsky J, Rogers WJ, Morris C, Somers DJ, Appels R, Devos KM (2013) MacGene 2012: catalogue of gene symbols for wheat. Accessed 4 Aug 2013
  19. Ren RS, Wang MN, Chen XM, Zhang ZJ (2012) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857PubMedCrossRefGoogle Scholar
  20. Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel S, Forrest K, Hayden M, Rebetzke G (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294PubMedCrossRefGoogle Scholar
  21. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449PubMedCentralPubMedCrossRefGoogle Scholar
  22. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023Google Scholar
  23. Singh RP, Rajaram S (1993) Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica 72:1–7CrossRefGoogle Scholar
  24. Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186CrossRefGoogle Scholar
  25. Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  26. Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293PubMedCrossRefGoogle Scholar
  27. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  28. Spielmeyer W, Lagudah ES, Sharp PJ (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L). Crop Sci 43:333–336Google Scholar
  29. Stephenson P, Bryan G, Kirby J, Collins A, Devos KM et al (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949CrossRefGoogle Scholar
  30. Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen X, Heesacker A, Ammar K, Crossa J, Mundt CC (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet 124:1–11CrossRefGoogle Scholar
  31. Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:869–904CrossRefGoogle Scholar
  32. Wan AM, Chen XM, He ZH (2007) Wheat stripe rust in China. Aust J Agric Res 58:605–619CrossRefGoogle Scholar
  33. Wang JK (2009) Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica 35:239–245CrossRefGoogle Scholar
  34. Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141CrossRefGoogle Scholar
  35. William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990PubMedCrossRefGoogle Scholar
  36. Wu LR, Niu YC (2000) Strategies of sustainable control of wheat stripe rust in China. Scientia Agricultura Sinica 33:1–7Google Scholar
  37. Yang J, Hu CC, Ye XZ, Zhu J (2005) QTL Network 2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China (
  38. Yang EN, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang ZX, Sun CF, Ren ZL, Singh RP (2013) QTL analysis of the spring wheat “Chapio” identifies stable stripe rust resistance despite inter-continental genotype × environment interactions. Theor Appl Genet 126:1721–1732PubMedCrossRefGoogle Scholar
  39. Zhang XJ, Han DJ, Zeng QD, DuanYH, Yuan FP, Shi JD, Wang QL, Wu JH, Huang LL, Kang ZS (2013) Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One 8(3)Google Scholar
  40. Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ, Rong L, Wang QL, Huang LL, Kang ZS (2014a) Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet 127(11):2349–2358. doi: 10.1007/s00122-014-2381-0 PubMedCrossRefGoogle Scholar
  41. Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX (2014b) Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor Appl Genet 127:935–945PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • X. L. Zhou
    • 1
  • Y. Zhang
    • 3
  • Q. D. Zeng
    • 1
  • X. M. Chen
    • 2
  • D. J. Han
    • 3
  • L. L. Huang
    • 1
  • Z. S. Kang
    • 1
  1. 1.State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
  2. 2.US Department of Agriculture, Agricultural Research Service (USDA-ARS), Wheat Genetics, Quality, Physiology and Disease Research Unit, and Department of Plant PathologyWashington State UniversityPullmanUSA
  3. 3.State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina

Personalised recommendations