Advertisement

Euphytica

, Volume 204, Issue 1, pp 91–101 | Cite as

A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases

  • Elena A. Salina
  • Irina G. Adonina
  • Ekaterina D. Badaeva
  • Pavel Yu. Kroupin
  • Anatoliy I. Stasyuk
  • Irina N. Leonova
  • Alexandra A. Shishkina
  • Mikhail G. Divashuk
  • Elizaveta V. Starikova
  • Thi Mai L. Khuat
  • Valeriy V. Syukov
  • Gennady I. Karlov
Article

Abstract

Wheatgrass Thinopyrum intermedium (Host), or Agropyron intermedium (Host) (2n = 42; genome formula, EEEstEstStSt) is one of the most valuable sources of highly effective resistance genes in wheat breeding. Bread wheat cultivars Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 derived from wheat—Thinopyrum crosses are highly resistant to leaf rust and powdery mildew, and moderately resistant to stem and yellow rust. C-banding, in situ hybridization, and assays with PLUG and SSR markers have demonstrated that wheat chromosome 6D in all three cultivars is substituted by the Th. intermedium homoeologous chromosome, 6Ai. This chromosome was designated 6Ai#2, because it differs from the earlier described homoeologous chromosome 6Ai#1. In situ hybridization with Pseudoroegneria spicata and Dasypyrum villosum genomic DNAs has allowed chromosome 6Ai#2 to be assigned to the E (=J) subgenome. Chromosome 6Ai#2 remained intact over long-term breeding efforts. Tests of leaf rust resistance of in F2 and F3 populations from a cross of a leaf rust–susceptible cultivar with Tulaikovskaya 10 has demonstrated that chromosome 6Ai#2 carries at least one gene locus for leaf rust resistance. This locus was designated Lr6Ai#2. It must be different from the known gene locus Lr38, located on the long arm of chromosome 7Ai#2 and now present in many translocation variants in bread wheat. The effect of a chromosome from the Th. intermedium subgenome E on resistance to powdery mildew, stem and yellow rust in Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 is discussed.

Keywords

Triticum aestivum Thinopyrum intermedium Rust resistance Chromosome 6D Lr6Ai#2 gene locus 

Notes

Acknowledgments

We are grateful to M. Röder (IPK, Gatersleben, Germany) for the SSR primers. The authors thank Dr. Dora Il’yasova, Associate Professor at Georgia State University, Atlanta, US for her help the translation of the manuscripts. This work was supported by Federal Targeted Program of the Russian Federation (agreement no. 14.604.21.0106). We thank the Microscopic Center of the Siberian Branch of the Russian Academy of Sciences (http://www.bionet.nsc.ru/microscopy/) for granting access to microscopic equipment.

References

  1. Badaeva ED, Badaev NS, Gill BS et al (1994) Intraspecific karyotype divergence in Triticum araraticum. Plant Syst Evol 192:117–145CrossRefGoogle Scholar
  2. Belan IA, Rosseyeva LP, Lozhnikova LF, Blokhina NP, Valueva LG (2010) Breeding value of spring wheat samples of VNIIR collection in the conditions of the south forest-steppe of West Siberia. Bull Altai State Agric Univ 72:8–13 (in Russian)Google Scholar
  3. Belan IA, Rosseyeva LP, Meshkova LV, Shepelev SS, Zelenskiy YuI (2012) Immunological evaluation of KASIB material in southern forest-steppe of west Siberia. Bull Altai State Agric Univ 96:39–43 (in Russian)Google Scholar
  4. Buloichik AA, Dolmatovich TV, Borzyak VS (2012) Marking of effective resistant genes to leaf rust in highly resistant samples of soft spring wheat. Dokl Natl Acad Sci Belarus 56:78–81Google Scholar
  5. Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359PubMedCrossRefGoogle Scholar
  6. Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 41:580–586PubMedCrossRefGoogle Scholar
  7. Davydova NV (2011) Selection of a spring wheat on productivity and quality of grain in the conditions of the center of the Nonchernozem zone of the Russian Federation. Dissertation, Moscow Scientific Research Institute of Agriculture, Nemchinovka, p 360 (in Russian)Google Scholar
  8. Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367PubMedCrossRefGoogle Scholar
  9. Filatova EV, Syukov VV, Anisimkina NV (2010) Influence of translocation from wheat grass T-5 on protein fractional structure of spring bread wheat. Agrar Report South East 4:15–17 (in Russian)Google Scholar
  10. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87CrossRefGoogle Scholar
  11. Ganal M, Röder M (2007) Microsatellite and SNP markers in wheat breeding. Genomics assisted crop improvement. In: Varshney RK, Tuberosa R (eds) Genomics applications in crops, vol 2. Springer, The Netherlands, pp 1–24Google Scholar
  12. Georgieva M, Sepsi A, Tyankova N, Molnar-Lang M (2011) Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Genet 52:269–277PubMedCrossRefGoogle Scholar
  13. Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839CrossRefGoogle Scholar
  14. Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder MS, Gautier M-F, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefGoogle Scholar
  15. Hu L, Li G, Zhan H, Liu C, Yang Z (2012) New St-chromosome-specific molecular markers for identifying wheat-Thinopyrum intermedium derivative lines. J Genet 91:69–74Google Scholar
  16. Ishikawa G, Nakamura T, Ashida T et al (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514PubMedCrossRefGoogle Scholar
  17. Karlov GI, Khrustaleva LI, Lim KB, Van Tuyl JM (1999) Homoeologous recombination in 2n gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–686CrossRefGoogle Scholar
  18. Khomenko SO, Fedorenko IB (2013) Bиxiдний мaтepiaл пшeницi м’якoї яpoї для ceлeкцiї нa cтiйкicть дo лиcтoвим гpибниx xвopoб для зoни лicocтeпy Укpaїни. Miжнapoднa нayкoвo-пpaктичнa кoнфepeнцiя Proceedings of conference. Cтaн тa пepcпeктиви poзвиткy зaxиcтy pocлин. Київ, p.99 (in Ukrainian)Google Scholar
  19. Kishii M, Wang RRC, Tsujimoto H (2005) GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J Genet Plants Breed 41:92–95Google Scholar
  20. Kroupin PY, Divashuk MG, Belov VI, Glukhova LI, Aleksandrov OS, Karlov GI (2011) Comparative molecular cytogenetic characterization of partial wheat-wheatgrass hybrids. Russ J Genet 47:432–437CrossRefGoogle Scholar
  21. Li G-R, Liu C, Li C-H, Zhao J-M, Zhou L, Dai G, Yang E-N, Yang Z-J (2013) Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat. Mol Breed 31:843–853CrossRefGoogle Scholar
  22. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2012) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
  23. Morgounov A, Ablova I, Babayants O, Babayants L, Bespalova L, Khudokormov Zh, Litvinenko N, Shamanin V, Syukov V (2011) Genetic protection of wheat from rusts and development of resistant varieties in Russia and Ukraine. Euphytica 179:297–311CrossRefGoogle Scholar
  24. Pienaar RV (1990) Wheat and Thinopyrum hybrids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Springer, Berlin, pp 167–217Google Scholar
  25. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007PubMedGoogle Scholar
  26. Röder MS, Korzun V, Wendehake K et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedCentralPubMedGoogle Scholar
  27. Salina EA, Lim YK, Badaeva ED, Scherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch A (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49:1023–1035PubMedCrossRefGoogle Scholar
  28. Sanin SS (2010) Assessment of epidemic stability of wheat cultivars to diseases and use of this indicator for optimization of biological and chemical protection. In: Proceedings of the 6th international scientific and practical conference. Biological plant protection as a basis for stabilizing agroecosystems. Krasnodar, Russia, pp. 540–577Google Scholar
  29. Schneider A, Linc G, Molnar-Lang M (2003) Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed 122:396–400CrossRefGoogle Scholar
  30. Sibikeev SN, Voronina SA, Krupnov VA (1995) Genetic control for resistance to leaf rust in wheat-Agropyron lines: agro 139 and Agro 58. Theor Appl Genet 90:618–620PubMedCrossRefGoogle Scholar
  31. Sibikeev SN, Krupnov VA, Voronina SA, Badaeva ED (2005) Identification of an alien chromosome in the common wheat line multi 6R. Russ J Genet 41:885–889CrossRefGoogle Scholar
  32. Sinigovetz ME (1976) Transfer of rust resistance from Agropyron to wheat by chromosome addition and substitution. Genetika 12:13–21 (in Russian)Google Scholar
  33. Sochalova L, Likhenko I (2011) Wheat resistance to fungal diseases in West Siberian region. Sib Herald Agric Sci 1:18–25 (in Russian)Google Scholar
  34. Somers JD, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  35. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560PubMedCrossRefGoogle Scholar
  36. Sourdille P, Singh S, Cadalen T et al (2004) Microsatellite based deletion bin system for the establishment of genetic- physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  37. Syukov VV (2003) Genetic aspects of spring bread wheat breeding in the Middle Volga region. Dissertation, Agricultural Research Institute of South-East Region, Saratov 192 p, (in Russian)Google Scholar
  38. Timonova EM, Leonova IN, Röder MS, Salina EA (2013) Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol Breed 31:123–136CrossRefGoogle Scholar
  39. V’yushkov AA, Malchikov PN, Syukov VV, Shevchenko SN (2012) Breeding and genetic improvement of spring wheat. Samara Scientific Center RAS, Samara, p 536 (in Russian)Google Scholar
  40. Wang RR-C (2011) Agropyron and Psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Heidelberg, pp 77–108CrossRefGoogle Scholar
  41. Zubov DE (2011). Breeding value of leaf rust resistance donors in Middle Volga region. Dissertation, Samara Scientific Research Institute of Agriculture, Bezenchuk 111 p, (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Elena A. Salina
    • 1
    • 5
  • Irina G. Adonina
    • 1
  • Ekaterina D. Badaeva
    • 2
  • Pavel Yu. Kroupin
    • 3
  • Anatoliy I. Stasyuk
    • 1
  • Irina N. Leonova
    • 1
  • Alexandra A. Shishkina
    • 2
  • Mikhail G. Divashuk
    • 3
  • Elizaveta V. Starikova
    • 3
  • Thi Mai L. Khuat
    • 3
  • Valeriy V. Syukov
    • 4
  • Gennady I. Karlov
    • 3
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.N.I.Vavilov Institute of General GeneticsRussianAcademy of SciencesMoscowRussia
  3. 3.Center for Molecular BiotechnologyRussian State Agrarian University – MTAAMoscowRussia
  4. 4.Samara Research Scientific Institute of AgricultureBezenchuk, Samara RegionRussia
  5. 5.Siberian Research Institute of Plant Growing and SelectionKrasnoobsk, Novosibirsk RegionRussia

Personalised recommendations