Advertisement

Euphytica

, Volume 201, Issue 1, pp 1–14 | Cite as

Floral traits to enhance outcrossing for higher hybrid seed production in rice: present status and future prospects

  • Balram Marathi
  • Kshirod K. Jena
Review

Abstract

High seed cost is a major factor limiting the adoption of hybrid rice in South and Southeast Asian countries. A practical way to improve hybrid seed production is to increase the outcrossing rate in rice. Several studies reveal that perennial wild Oryza species have a higher outcrossing rate than annual species. Among various traits that influence outcrossing, pistil characteristics are the most crucial in improving the seed set on the male sterile parent in hybrid seed production. Wild species are known to have wide genetic variability for stigma length, anther length, and percent stigma exsertion. This review establishes the need to exploit new genetic resources, through both classical and molecular breeding approaches, to improve seed production. It also reviews the genetic variability of floral characteristics, the genetics of floral traits that influence outcrossing, and progress made in understanding these traits using biotechnological approaches, the effect of environment on floral traits and the resulting prospects for improving hybrid rice seed production.

Keywords

Rice Floral traits Outcrossing Genetics QTL Gene Hybrid seed production 

Notes

Acknowledgments

We thank the three anonymous reviewers of International Rice Research Institute (IRRI) for their useful comments and suggestions to improve this review article. We also thank Leah Cruz and Bill Hardy of IRRI for editing this article. We are grateful to Dr. Robert S. Zeigler, director general of IRRI, for his encouragement and support for writing this review.

References

  1. Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234CrossRefGoogle Scholar
  2. Ammiraju JSS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B, Fang E, Tomkins JB, Brar DS, Mackill DJ, McCouch SR, Kurata N, Lambert G, Galbraith DW, Arumuganathan K, Rao K, Walling JG, Gill N, Yu Y, San Miguel P, Soderlund C, Jackson S, Wing RA (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16(1):140–147PubMedCentralPubMedCrossRefGoogle Scholar
  3. Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232CrossRefGoogle Scholar
  4. Azzini LE, Rutger JN (1982) Amount of outcrossing on different male steriles of rice. Crop Sci 22:905–907CrossRefGoogle Scholar
  5. Barbier P (1987) Ecological genetic study on wild rice populations from Thailand. Nagoya University, DissertaionGoogle Scholar
  6. Beachell HM, Adair CR, Jodon NE, Davis LL, Jones JW (1938) Extent of natural crossing in rice. J Am Soc Agron 30:743–753CrossRefGoogle Scholar
  7. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877PubMedCentralPubMedGoogle Scholar
  9. Brown FB (1957) Natural cross-pollination in Malaya. Malay Agric J 40:264–268Google Scholar
  10. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228PubMedCrossRefGoogle Scholar
  11. Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se21: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645PubMedCrossRefGoogle Scholar
  13. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  14. Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61:767–781PubMedCrossRefGoogle Scholar
  15. Davidson RM, Hansey CN, Gowda M, Childs KL, Lin H, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N, Buell CR (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4:191–203CrossRefGoogle Scholar
  16. Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, An G, Colombo L, Kater MM (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52:690–699PubMedCrossRefGoogle Scholar
  17. Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: genetics and exploitation of heterosis in crops American society of agronomy, Inc, crop science society of America, Inc, soil science society of America, Inc Madison, Wisconsin, USAGoogle Scholar
  18. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  19. Fotidar MR (1945) Natural cross-pollination in paddy. Indian Farming 6:15–16Google Scholar
  20. Fukayama H, Sugino M, Fukuda T, Masumoto C, Taniguchi Y, Okada M, Sameshima R, Hatanaka T, Misoo S, Hasegawa T, Miyao M (2011) Gene expression profiling of rice grown in free air CO2 enrichment (FACE) and elevated soil temperature. Field Crops Res 121:195–199CrossRefGoogle Scholar
  21. Hassan MA, Siddiq EA (1984) Inheritance of anther and stigma in rice (Oryza sativa L.). Indian J Genet 44:544–547Google Scholar
  22. Hayes HK, Immer FR, Smith DC (1955) Methods of plant breeding. McGraw Hill Book Co, New YorkGoogle Scholar
  23. Hittalmani S, Shivashanker G (1987) Outcrossing on male sterile plants of rice. Mysore J Agric Sci 21:158–160Google Scholar
  24. Hu S, Zhou Y, Zhang L, Zhu X, Wang Z, Li L, Luo L, Zhou Q (2009) QTL analysis of floral traits of rice (Oryza sativa L.) under well-watered and drought stress conditions. Genes Genomic 31(2):173–181CrossRefGoogle Scholar
  25. Hua CS, Cao L, Zhuang J, Wu W, Yang S, Zhang X (2009) A breeding strategy for hybrid rice in China. In: Xie F, Hardy B (eds) Accelerating hybrid rice development. International Rice Research Institute, Los Baños, pp 25–34Google Scholar
  26. Huang CS, Huang HH (1978) Stigma exsertion after anthesis and its inheritance in rice, Oryza sativa. Agric Res Inst Taipei, Taiwan, pp 21–25Google Scholar
  27. IRGSP (2005) The map-based sequence of the rice genome. Nature 436(11):793–800Google Scholar
  28. Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884PubMedCentralPubMedGoogle Scholar
  29. Jiang Y, Cai Z, Xie W, Long T, Zhang T (2011) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv. doi: 10.1016/jbiotechadv201108013 PubMedGoogle Scholar
  30. Jodon NE (1959) Occurrence and importance of natural crossing in rice. Rice J 62:8–10Google Scholar
  31. Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722PubMedCentralPubMedCrossRefGoogle Scholar
  32. Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kadam BS, Patil GG (1933) Natural cross-fertilization in rice. Poona Agric Coll Mag 25:53–61Google Scholar
  34. Kato H, Namai H (1987a) Intervarietal variations of floral characteristics with special reference to F1 seed production in Japonica rice (Oryza sativa L.). Jpn J Breed 37:75–87CrossRefGoogle Scholar
  35. Kato H, Namai H (1987b) Floral characteristics and environmental factors for increasing natural outcrossing rate for F1 hybrid seed production of rice (Oryza sativa L). Jpn J Breed 37:318–330CrossRefGoogle Scholar
  36. Kim H, Hurwitz B, Yu Y, Collura K, Gill N, SanMiguel P, Mullikin JC, Maher C, Nelson W, Wissotski M, Braidotti M, Kudrna D, Goicoechea JL, Stein L, Ware D, Jackson SA, Soderlund C, Wing RA (2008) Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol 9(2):R45PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kyozuka J, Shimamoto K (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol 43:130–135PubMedCrossRefGoogle Scholar
  38. Larter LNH (1950) Natural cross-pollination of wet paddy in Malaya. Malay Agric J 33:82Google Scholar
  39. Li T, Chen Y (1985) Genetics of stigma exsertion in rice. Rice Genet Newsl 2:84–85Google Scholar
  40. Li C, Sun CQ, Mu P, Chen L, Wang XK (2001) QTL analysis of anther length and ratio of stigma exsertion, two key traits of classification for cultivated rice (Oryza sativa L.) and common wild rice (O. rufipogon Griff.). Acta Genet Sin 28(8):746–751PubMedGoogle Scholar
  41. Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wan J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014PubMedCentralPubMedCrossRefGoogle Scholar
  42. Li M, Xu W, Yang W, Kong Z, Xue Y (2007) Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Plant Physiol 144:1797–1812PubMedCentralPubMedCrossRefGoogle Scholar
  43. Li H, Gao F, Zeng L (2010a) QTL analysis of rice stigma morphology using an introgression line from Oryza longistaminata. Plant Mol Breed 8(6):1082–1089Google Scholar
  44. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010b) Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lopez-Dee ZP, Wittich P, Enrico PM, Rigola D, Del-Buono I, Gorla MS, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244PubMedCrossRefGoogle Scholar
  46. Mahadevappa M (1973) A cent per cent male sterile hybrid in rice at RRS mandya offers great scope for research on inducing desirable characters. Curr Res 2:91  Google Scholar
  47. Marathi B, Ramos J, Hechanova SL, Oane RH, Jena KK (2014) SNP genotyping and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica. doi: 10.1007/s10681-014-1213-2
  48. Miyata M, Yamamoto T, Komori T, Nitta N (2007) Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet 114:539–548PubMedCrossRefGoogle Scholar
  49. Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res 90:47–59CrossRefGoogle Scholar
  50. Morishima H, Hinata K, Oka HI (1963) Comparison of modes of evolution of cultivated forms from two wild rice species, Oryza breviligulata and O perennis. Evolution 17:170–181CrossRefGoogle Scholar
  51. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718PubMedCrossRefGoogle Scholar
  52. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025PubMedCentralPubMedCrossRefGoogle Scholar
  53. Oka HI (1956) Observations on natural populations of Formosan wild rice. Annu Rep Natl Inst Genet Jpn 6:46–47Google Scholar
  54. Oka HI (1988) Origin of cultivated rice. Jpn Sci Soc Press, TokyoGoogle Scholar
  55. Oka HI, Chang WT (1959) The impact of cultivation on populations of wild rice, O sativa f spontanea. Phyton 13:105–117Google Scholar
  56. Oka HI, Chang WT (1961) Hybrid swarine between wild and cultivated rice species, Oryza perennis and O sativa. Evolution 15:418–430CrossRefGoogle Scholar
  57. Oka HI, Morishima H (1967) Variations in the breeding systems of wild rice, Oryza perennis. Evolution 21:249–258CrossRefGoogle Scholar
  58. Palaniswamy KM, Rajagopalan K (1964) Studies on natural cross-pollination in rice at Coimbatore. Madras Agric J 51:173–177Google Scholar
  59. Parmer KS, Siddiq EA, Swaminathan MS (1979a) Variation in components of flowering behaviour of rice. Indian J Genet 39:542–550Google Scholar
  60. Parmer KS, Siddiq EA, Swaminathan MS (1979b) Variation in anther and stigma characteristics in rice. Indian J Genet 39:551–559Google Scholar
  61. Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe E, Colombo L, Kater M (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122CrossRefGoogle Scholar
  62. Pingali PL, Morris M, Moya P (1998) Prospects for hybrid rice in tropical Asia. In: Virmani SS, Siddiq EA, Muralidharan K (eds) Advances in hybrid rice technology. International Rice Research Institute, Los Baños, pp 11–26Google Scholar
  63. Poggendorf W (1932) Flowering pollination and natural crossing in rice: a technique satisfactory for Yauco conditions. Agric Gaz NS Wales 43:898–904Google Scholar
  64. Quiapim AC, Brito MS, Bernardes LAS, daSilva I, Malavazi I, DePaoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MHS (2009) Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol 149:1211–1230PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ramaiah K (1936) Rice genetics. Proc Assoc Econ Biol 3:51–61Google Scholar
  66. Ramaiah K (1953) Rice breeding and genetics. Sci Monograph No 19, Indian Council of Agricultural Research, New DelhiGoogle Scholar
  67. Ramalingam J, Nadrajan N, Vanniarajan C, Rangsamy P (1997) Floral traits influencing outcrossing rate in rice. Int Rice Res Notes 22:18–19Google Scholar
  68. Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60:1–9PubMedCrossRefGoogle Scholar
  69. Roberts EH, Craufurd RQ, Le-Cochec F (1961) Estimation of percentage of natural cross-pollination: experiment on rice. Nature 190:1084–1085CrossRefGoogle Scholar
  70. Roy SC (1921) A preliminary classification of the wild rices of the central province and Berar. Agric J India 16:365–380Google Scholar
  71. Sahadevan PC, Namboodiri KMN (1963) Natural crossing in rice. Proc Indian Acad Sci Sect B58:176–185Google Scholar
  72. Sakai KI, Narise T (1959) Studies on the breeding behavior of wild rice. Annu Rep Natl Inst Genet Jpn 9:64–65Google Scholar
  73. Sakai KI, Narise T (1960) Further note on natural crossing in wild rice. Annu Rep Natl Inst Genet Jpn 10:65Google Scholar
  74. Salgotra RK, Gupta BB, Singh S (2009) Evaluation of various floral traits in some rice CMS lines that influence seed setting under subtropical conditions. SABRAO J Breed Genet 41(2):115–122Google Scholar
  75. Sampath S (1962) The genus Oryza: its taxonomy and species interrelationships. Oryza 1:1–29Google Scholar
  76. Seck PA, Diagne A, Mohanty S, Wopereis MCS (2012) Crops that feed the world. Food Secur 4(1):7–24CrossRefGoogle Scholar
  77. Sheeba A, Vivekanandan P, Ibrahim SM (2006) Genetic variability for floral traits influencing outcrossing in the CMS lines of rice. Indian J Agric Res 40(4):272–276Google Scholar
  78. Sidharthan B, Thiyagarajan K, Manonmani S (2007) Cytoplasmic male sterile lines for hybrid rice production. J Appl Sci Res 3(10):935–937Google Scholar
  79. Srinivasan V, Subramaniyam A (1961) A note on natural cross-pollination in rice at agricultural research station, Aduthurai (Thanjavur). Madras Agric J 48:262–263Google Scholar
  80. Swanson R, Clark T, Preuss D (2005) Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex Plant Reprod 18:163–171CrossRefGoogle Scholar
  81. Taillebois J, Guimaraes EP (1988) Improving outcrossing rate in rice (Oryza sativa L.). In: proceedings of the 1st international symposium on hybrid rice, International Rice Research Institute, Los Baños, Philippines, pp 175–180Google Scholar
  82. Taillebois J, Dossmann J, Peedes H (2012) A tool to breed A-lines with high outcrossing ability. In: 6th international hybrid rice symposium, International Rice Research Institute, Los Baños, Philippines, p 152Google Scholar
  83. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334PubMedCentralPubMedCrossRefGoogle Scholar
  84. Takano-Kai N, Doi K, Yoshimura A (2011) GS3 participates in stigma exsertion as well as seed length in rice. Breed Sci 61:244–250CrossRefGoogle Scholar
  85. Tallis MJ, Lin Y, Rogers A, Zhang J, Street NR, Miglietta F, Karnosky DF, De Angelis P, Calfapietra C, Taylor G (2010) The transcriptome of populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytol 186:415–428PubMedCrossRefGoogle Scholar
  86. Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB (2005) Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 138:977–989PubMedCentralPubMedCrossRefGoogle Scholar
  87. Uga Y, Fukuta Y, Cai HW, Iwata H, Ohsawa R, Morishima H, Fujimura T (2003a) Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L. and O rufipogon Griff. Theor Appl Genet 107:218–226PubMedCrossRefGoogle Scholar
  88. Uga Y, Fukuta Y, Ohsawa R, Fujimura T (2003b) Variations of floral traits in Asian cultivated rice (Oryza sativa L.) and its wild relatives (O rufipogon Griff.). Breed Sci 53:345–352CrossRefGoogle Scholar
  89. Uga Y, Siangliw M, Nagamine T, Ohsawa R, Fujimura T, Fukuta Y (2010) Comparative mapping of QTLs determining glume, pistil and stamen sizes in cultivated rice (Oryza sativa L.). Plant Breed 129:657–669CrossRefGoogle Scholar
  90. Virmani SS (1994) Heterosis and hybrid rice breeding, In: Frankel R, Grossman BM, Linskens WHF, Maliga NP, Riley PR (ed) Monographs on theoretical and applied genetics, Vol. 22 Springer-Verlag, Berlin, Heidelberg, GermanyGoogle Scholar
  91. Virmani SS (2003) Advances in hybrid rice research and development in the tropics. In: Virmani SS, Mao CX, Hardy B (eds) Hybrid rice for food security, poverty alleviation, and environmental protection International Rice Research Institute. Los Baños, Philippines, pp 7–20Google Scholar
  92. Virmani SS, Athwal DS (1973) Genetic variability for floral characters influencing outcrossing in Oryza sativa L. Crop Sci 13:66–67CrossRefGoogle Scholar
  93. Virmani SS, Athwal DS (1974) Inheritance of floral characteristics influencing outcrossing in rice. Crop Sci 14:350–353CrossRefGoogle Scholar
  94. Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z (2010) DEP and AFO regulate reproductive habit in rice. PLoS Genet 6:e1000818PubMedCentralPubMedCrossRefGoogle Scholar
  95. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326PubMedCentralPubMedCrossRefGoogle Scholar
  96. Xie F (2009) Priorities of IRRI hybrid rice breeding. In: Xie F, Hardy B (eds) Accelerating hybrid rice development. International Rice Research Institute, Los Baños, pp 49–62Google Scholar
  97. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang QF (1999) Identification of genetic factors controlling domestication related traits of rice using an F2 population of a cross between Oryza sativa and O rufipogon. Theor Appl Genet 98:243–251CrossRefGoogle Scholar
  98. Xu S, Li B (1988) Managing hybrid rice seed production. Proceedings of the 1st international symposium on hybrid rice. International Rice Research Institute, Los Baños, pp 157–163Google Scholar
  99. Xu YB, Shen ZT (1987) Inheritance of stigma exsertion in rice. Rice Genet Newsl 4:76Google Scholar
  100. Xu XH, Chen H, Sang YL, Wang F, Ma JP, Gao X, Zhang XS (2012) Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genom 13:294CrossRefGoogle Scholar
  101. Yadav SR, Prasad K, Vijayraghavan U (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283–294PubMedCentralPubMedCrossRefGoogle Scholar
  102. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509PubMedCentralPubMedCrossRefGoogle Scholar
  103. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18:15–28PubMedCentralPubMedCrossRefGoogle Scholar
  104. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high hemperature using DNA microarray. Plant Physiol 144:258–277PubMedCentralPubMedCrossRefGoogle Scholar
  105. Yamamoto T, Takemori N, Sue N, Nitta N (2003) QTL analysis of stigma exsertion in rice. Rice Genet Newsl 20:33–34Google Scholar
  106. Yan WG, Li Y, Agrama HA, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292PubMedCentralPubMedCrossRefGoogle Scholar
  107. Yao SG, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49:853–857PubMedCrossRefGoogle Scholar
  108. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62(14):4719–4730PubMedCrossRefGoogle Scholar
  109. Yu XQ, Mei HW, Luo LJ, Liu GL, Zou GH, Hu SP, Li MS, Wu JH (2006) Dissection of additive, epistatic and Q X E interaction of quantitative trait loci influencing stigma exsertion under water stress in rice. Acta Genet Sin 33(6):542–550PubMedCrossRefGoogle Scholar
  110. Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135:1514–1525PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Plant Breeding, Genetics, and Biotechnology DivisionInternational Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations