Euphytica

, Volume 201, Issue 1, pp 89–95 | Cite as

Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust

  • Virginia Ochoa
  • Eva Madrid
  • Mahmoud Said
  • Diego Rubiales
  • Adoración Cabrera
Article

Abstract

Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a perennial species of economic importance as forage that also displays potentially valuable traits for wheat improvement trough intergeneric hybridization. In order to incorporate resistance genes from A. cristatum against wheat leaf rust (Puccinia triticina Erikss.) into common wheat (Triticum aestivum L.) a breeding programme was carried out by crossing and backcrossing the self-fertile amphiploid AABBDDPP (2n = 8x = 56) with T. aestivum (2n = 6x = 42; AABBDD). The AABBDDPP amphiploid was previously obtained by crossing tetraploid wheat (Triticum turgidum L. conv. durum Desf. 2n = 4x = 28; AABB) with a self-fertile allotetraploid (2n = 4x = 28; DDPP) between diploid wheat (Aegilops tauschii Coss.) and crested wheatgrass (A. cristatum). After three backcrosses a fertile stable line (named TH4) was obtained with 42 chromosomes. The fluorescence in situ hybridization and GISH analysis confirmed that TH4 carries a compensating robertsonian translocation involving the long arm of wheat chromosome 1B and the short arm of an unidentified A. cristatum chromosome. Specific molecular markers from A. cristatum also demonstrated the presence of chromatin from this species in the TH4 line. Macroscopic and microscopic observations indicated that the A. cristatum fragment that has been transferred to common wheat contributed a substantial level of partial resistance to leaf rust. The A. cristatum translocation line in bread wheat makes the disease resistance gene(s) from A. cristatum accessible for wheat breeding programmes.

Keywords

Common wheat Agropyron cristatum Introgression Leaf rust FISH GISH SSR markers 

References

  1. Asay HK, Johnson DA (1990) Genetic variances for forage yield in crested wheatgrass at six levels of irrigation. Crop Sci 30:79–82CrossRefGoogle Scholar
  2. Cabrera A, Ramirez MC, Martin A (1999) Application of C-banding and fluorescence in situ hybridization for the identification of the trisomics of Hordeum chilense. Euphytica 109:123–129CrossRefGoogle Scholar
  3. Cabrera A, Martin A, Barro F (2002) In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res 10:49–54PubMedCrossRefGoogle Scholar
  4. Chen Q, Jahier J, Cauderon Y (1989) Cytological studies on Agropyron Gaertn. species from inner Mongolia, China. C.R. Acad Sci Paris 309:519–525Google Scholar
  5. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Proceedings of 16th Stadler Genetics Symposium. Plenum, New York, pp. 209–279Google Scholar
  6. Dong YS, Zhou RH, Xu SJ, Li H, Cauderon Y, Wang RC (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178CrossRefGoogle Scholar
  7. Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782PubMedCrossRefGoogle Scholar
  8. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885PubMedCentralPubMedCrossRefGoogle Scholar
  9. Jackson EW, Obert DE (2008) Detached-leaf method for propagating Puccinia coronata and assessing crown rust resistance in oat. Plant Dis 92:1400–1406CrossRefGoogle Scholar
  10. Jubault M, Tanguy AM, Abelard P, Coriton O, Dusautoir JC, Jahier J (2006) Attempts to induce homoeologous pairing between wheat and Agropyron cristatum genomes. Genome 49:190–193PubMedGoogle Scholar
  11. Knott DR (1989) The wheat rusts—breeding for resistance. Monographs on theoretical and applied genetics 12. Springer, BerlinGoogle Scholar
  12. Kolmer J (2013) Leaf rust of wheat: pathogen biology, variation and host resistance. Forests 4:70–84CrossRefGoogle Scholar
  13. Limin A, Fowler D (1990) An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome 33:581–584CrossRefGoogle Scholar
  14. Luan Y, Wang X, Liu W, Li C, Zhang J et al (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510PubMedCrossRefGoogle Scholar
  15. Martín A, Rubiales D, Cabrera A (1998) Meiotic pairing in a trigeneric hybrid Triticum tauschii-Agropyron cristatum-Hordeum chilense. Hereditas 129:113–118CrossRefGoogle Scholar
  16. Martín A, Cabrera A, Esteban E, Hernández P, Ramírez MC, Rubiales D (1999) A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheat grass (Agropyron cristatum). Genome 42:519–524PubMedCrossRefGoogle Scholar
  17. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2012) Catalogue of gene symbols for wheat: 2012. In KOMUGI integrated wheat science database. www.shigen.nig.ac.jp/wheat/komugi/genes (Accessed 08 January 2013)
  18. Niks RE (1982) Early abortion of colonies of leaf rust Puccinia hordei in partially resistant barley seedlings. Can J Bot 60:714–723CrossRefGoogle Scholar
  19. Niks RE, Rubiales D (2002) Potentially durable resistance mechanisms in plant to specialized fungal pathogens. Euphytica 124:201–216CrossRefGoogle Scholar
  20. Parlevliet JE, van Ommeren A (1988) Accumulation of partial resistance in barley to barley leaf rust and powdery mildew through recurrent selection against susceptibility. Euphytica 37:261–274CrossRefGoogle Scholar
  21. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593PubMedCrossRefGoogle Scholar
  22. Rubiales D, Niks RE (1992) Histological responses in Hordeum chilense to brown and yellow rust fungi. Plant Pathol 41:611–617CrossRefGoogle Scholar
  23. Rubiales D, Brown JKM, Martín A (1993) Hordeum chilense resistance to powdery mildew and its potential use in cereal breeding. Euphytica 67:215–220CrossRefGoogle Scholar
  24. Said M, Recio R, Cabrera A (2012) Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica 188:429–440CrossRefGoogle Scholar
  25. Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143CrossRefGoogle Scholar
  26. Soliman MH, Rubiales D, Cabrera A (2001) A fertile amphiploid between durum wheat (Triticum turgidum) and the x Agroticum amphiploid (Agropyron cristatum x T. tauschii). Hereditas 135:183–186PubMedCrossRefGoogle Scholar
  27. Soliman MH, Cabrera A, Sillero JC, Rubiales D (2007) Genomic constitution and expression of disease resistance in Agropyron cristatum x durum wheat derivatives. Breed Sci 57:17–21CrossRefGoogle Scholar
  28. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  29. Song L, Jiang L, Han H, Gao A, Yang X et al (2013) Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE 8(7):e69501PubMedCentralPubMedCrossRefGoogle Scholar
  30. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  31. Stakman EC, Steward DM,Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. Minn Agric Exp Sci J Ser Pap 4691Google Scholar
  32. Wu J, Yang XM, Wang H, Li HJ, Li LH, Li XQ, Liu WH (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20PubMedCrossRefGoogle Scholar
  33. Wu M, Zhang JP, Wang JC, Yang XM, Gao AN, Zhang XK, Liu WH, Li LH (2010) Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172:363–372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Virginia Ochoa
    • 1
    • 2
    • 3
  • Eva Madrid
    • 2
  • Mahmoud Said
    • 1
    • 4
  • Diego Rubiales
    • 2
  • Adoración Cabrera
    • 1
  1. 1.Department of GeneticsETSIAM, University of CórdobaCórdobaSpain
  2. 2.Institute for Sustainable AgricultureCSICCórdobaSpain
  3. 3.Canary Institute of Agri-Food QualitySanta Cruz de TenerifeSpain
  4. 4.Institute of Experimental BotanyOlomouc-HoliceCzech Republic

Personalised recommendations