Advertisement

Euphytica

, Volume 199, Issue 1–2, pp 81–95 | Cite as

Refining breeding methods for organic and low-input agriculture: analysis of an international winter wheat ring test

  • Almuth Elise Muellner
  • Fabio Mascher
  • David Schneider
  • Gheorghe Ittu
  • Ion Toncea
  • Bernard Rolland
  • Franziska Löschenberger
Article

Abstract

An increasing interest in sustainable forms of agriculture exists worldwide and the demand for varieties specifically adapted to organic and low-input agriculture is rising. As a consequence, breeding methods need to be refined accordingly. In order to get better insight into needs and possibilities with this regard, a comprehensive ring test was performed from 2006 to 2008 with 14 winter wheat varieties in 36 environments in major cropping regions of Austria, France, Romania and Switzerland. Environments were grouped into 9 different subsets according to input systems, years, and countries. Input system N0 consisted of 13 organic and 6 no-input trials; 17 trials in input system N received various levels of synthetic nitrogen. For grain yield (YLD) and protein yield (PYLD), significant G × E was detected. Countries had a stronger effect on both traits than systems. Overall, it was more efficient to select YLD and PYLD in N, for targeting both systems N and N0. For PYLD, direct testing within a given country was always more efficient than indirect selection. Many traits could be scored equally well in both systems, N and N0, but for some traits particularly important for organic agriculture, such as soil coverage, better differentiation was observed under organic conditions. Therefore, we agree with other authors that a commercially sustainable breeding program for organic and low-input agriculture should combine information from high and low-input levels and from diverse regions. Local testing of varieties, however, remains indispensable.

Keywords

Breeding Genotype by environment interaction (G × E) Low-input agriculture Organic agriculture Relative efficiency of indirect selection Triticum aestivum 

Abbreviations

H

Broad sense heritability

LI

Low-input (conventional) trials

N0

Without synthetic nitrogen supply

N

With synthetic nitrogen supply

NI

No-input (conventional) trials

OA

Organic trials

PROT

Protein content

PYLD

Protein yield

RE

Relative efficiency of indirect selection

YLD

Grain yield

Notes

Acknowledgments

We thank Heinrich Grausgruber for statistical advice, we are grateful to Hannah Keely Smith for English writing advice and to Matt Clark (PotentProofreading.wordpress.com) for English proof reading. This work was initiated in the framework of the EU supported cost action 860 SUSVAR (http://www.cost860.dk) and data analysis was supported by EU FP7– project SOLIBAM (http://www.solibam.eu).

References

  1. AGES (2013) Österreichische beschreibende Sortenliste. http://www.baes.gv.at/pflanzensorten/oesterreichische-beschreibende-sortenliste/pdf-version-der-bsl-2013. Accessed 20 Nov 2013
  2. Baenziger PS, Salah I, Little RS, Santra DK, Regassa T, Wang MY (2011) Structuring an efficient organic wheat breeding program. Sustainability 3:1190–1205. doi: 10.3390/su3081190 CrossRefGoogle Scholar
  3. Bernal EF, Villardon PG (2013) Package ‘GGEBiplotGUI’. http://www.inside-r.org/packages/cran/GGEBiplotGUI/docs/GGEBiplotGUI. Accessed 5 Dec 2013
  4. BLW (2013) Direct payments. http://www.blw.admin.ch/themen/00006/index.html?lang=en. Accessed 5 Dec 2013
  5. Brancourt-Hulmel M, Heumez E, Pluchard P, Beghin D, Depatureaux C, Giraud A, Le Gouis J (2005) Indirect versus direct selection of winter wheat for low-input or high-input levels. Crop Sci 45:1427. doi: 10.2135/cropsci2003.0343 CrossRefGoogle Scholar
  6. Cormier F, Faure S, Dubreuil P, Heumez E, Beauchêne K, Lafarge S, Praud S, Le Gouis J (2013) A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor Appl Genet 126(12):3035–3048. doi: 10.1007/s00122-013-2191-9 PubMedCrossRefGoogle Scholar
  7. Falconer DS, Mackay TFC (1997) Introduction to quantitative genetics, 4th edn. Longman, HarlowGoogle Scholar
  8. Gauch HG, Piepho H-P, Annicchiarico P (2008) Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci 48:866. doi: 10.2135/cropsci2007.09.0513 CrossRefGoogle Scholar
  9. Hildermann I, Messmer M, Kunz P, Pregitzer A, Boller T, Wiemken A (2010) Sortex Umwelt-Interaktionen von Winterweizen im biologischen Landbau. In: Österreichs VdPuS (ed) Tagungsband der 60. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, pp 163–165Google Scholar
  10. Kamran A, Kubota H, Yang R-C, Randhawa HS, Spaner D (2013) Relative performance of Canadian spring wheat cultivars under organic and conventional field conditions. Euphytica 196:13–24. doi: 10.1007/s10681-013-1010-3 CrossRefGoogle Scholar
  11. Kebede AZ, Mahuku G, Burgueño J, Vicente FS, Cairns JE, Das B, Makumbi D, Magorokosho C, Windhausen VS, Melchinger AE, Atlin GN (2013) Effectiveness of selection at CIMMYT’s main maize breeding sites in Mexico for performance at sites in Africa and vice versa. Plant Breed 132:299–304. doi: 10.1111/pbr.12063 CrossRefGoogle Scholar
  12. Kirk AP, Fox SL, Entz MH (2012) Comparison of organic and conventional selection environments for spring wheat. Plant Breed 131:687–694. doi: 10.1111/j.1439-0523.2012.02006.x CrossRefGoogle Scholar
  13. Lammerts van Bueren ET, Myers JR (2012) Organic crop breeding. In: Myers JR, Lammerts van Bueren ET (eds) Organic crop breeding. Wiley, Hoboken, pp 3–12CrossRefGoogle Scholar
  14. Lammerts van Bueren ET, Østergård H, Goldringer I, Scholten O (2008) Plant breeding for organic and sustainable, low-input agriculture: dealing with genotype–environment interactions. Euphytica 163:321–322. doi: 10.1007/s10681-008-9731-4 CrossRefGoogle Scholar
  15. Lammerts van Bueren ET, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer MM (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS Wageningen J Life Sci 58(3–4):193–205. doi: 10.1016/j.njas.2010.04.001 CrossRefGoogle Scholar
  16. Löschenberger F (2009) Winterweizen für den Biolandbau: Vergleich der Effizienz von Selektionsparametern: inwieweit können konventionelle Versuche für die Bio-Selektion in frühen Generationen herangezogen werden. In: Hartl W, Schweiger P, Hofer M, Diethart I (eds) Österreichisches Saatugt-/Sortenprojekt für den Biolandbau 2004–2009. Bio Forschung Austria, Vienna, pp 172–219Google Scholar
  17. Löschenberger F, Fleck A, Grausgruber H, Hetzendorfer H, Hof G, Lafferty J, Marn M, Neumayer A, Pfaffinger G, Birschitzky J (2008) Breeding for organic agriculture: the example of winter wheat in Austria. Euphytica 163:469–480. doi: 10.1007/s10681-008-9709-2 CrossRefGoogle Scholar
  18. Mason HE, Spaner D (2006) Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can J Plant Sci 86(2):333–343. doi: 10.4141/P05-051 CrossRefGoogle Scholar
  19. Murphy KM, Campbell KG, Lyon SR, Jones SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crop Res 102:172–177. doi: 10.1016/j.fcr.2007.03.011 CrossRefGoogle Scholar
  20. Oberforster M, Werteker M (2009) Relative Vorzüglichkeit verschiedener Weizensorten in Abhängigkeit von Ertrag, Qualität und Erzeugerpreisen. In: Mayer J, Alföldi T, Leiber F et al. (eds) 10. Wissenschaftstagung zum Ökologischen Landbau, Zürich, 11–13th February 2009, pp 302-305 Google Scholar
  21. Przystalski M, Osman A, Thiemt EM, Rolland B, Ericson L, Østergård H, Levy L, Wolfe M, Büchse A, Piepho H-P, Krajewski P (2008) Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 163:417–433. doi: 10.1007/s10681-008-9715-4 CrossRefGoogle Scholar
  22. RDC Team (2014) R: A language and environment for statistical computing. Austria, ViennaGoogle Scholar
  23. Reid T, Yang R-C, Salmon DF, Spaner D (2009) Should spring wheat breeding for organically managed systems be conducted on organically managed land? Euphytica 169:239–252. doi: 10.1007/s10681-009-9949-9 CrossRefGoogle Scholar
  24. Reid T, Yang R-C, Salmon DF, Navabi A, Spaner D (2011) Realized gains from selection for spring wheat grain yield are different in conventional and organically managed systems. Euphytica 177:253–266. doi: 10.1007/s10681-010-0257-1 CrossRefGoogle Scholar
  25. Rolland B, Le Campion A, Oury FX (2012) Pourquoi sélectionner de nouvelles variétés de blé tendre adaptées à l’agriculture biologique? Courrier de l’environnement de l’INRA 62:71–85Google Scholar
  26. Stagnari F, Onofri A, Codianni P, Pisante M (2013) Durum wheat varieties in N-deficient environments and organic farming: a comparison of yield, quality and stability performances. Plant Breed 132:266–275. doi: 10.1111/pbr.12044 CrossRefGoogle Scholar
  27. Weber VS, Melchinger AE, Magorokosho C, Makumbi D, Bänziger M, Atlin GN (2012) Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Sci 52:1011. doi: 10.2135/cropsci2011.09.0486 CrossRefGoogle Scholar
  28. Willer H, Kilcher L (eds) (2013) The world of organic agriculture. Statistics and emerging trends. IFOAM, BonnGoogle Scholar
  29. Wortman SE, Ca Francis, Galusha TD, Hoagland C, Van Wart J, Baenziger PS, Hoegemeyer T, Johnson M (2013) Evaluating cultivars for organic farming: maize, soybean, and wheat genotype by system interactions in Eastern Nebraska. Agroecol Sustain Food Syst 37:915–932. doi: 10.1080/21683565.2013.764956 CrossRefGoogle Scholar
  30. Yan W, Holland JB (2009) A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 171:355–369. doi: 10.1007/s10681-009-0030-5 CrossRefGoogle Scholar
  31. Yan W, Kang MS, Ma B, Woods S, Cornelius PL (2007) GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47:643. doi: 10.2135/cropsci2006.06.0374 CrossRefGoogle Scholar
  32. Yang R-C, Crossa J, Cornelius PL, Burgueño J (2009) Biplot analysis of genotype × environment interaction: proceed with caution. Crop Sci 49:1564. doi: 10.2135/cropsci2008.11.0665 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Almuth Elise Muellner
    • 1
    • 2
  • Fabio Mascher
    • 3
  • David Schneider
    • 3
    • 6
  • Gheorghe Ittu
    • 4
  • Ion Toncea
    • 4
  • Bernard Rolland
    • 5
  • Franziska Löschenberger
    • 2
  1. 1.Institute for Biotechnology in Plant ProductionUniversity of Natural Resources and Life SciencesTullnAustria
  2. 2.Saatzucht Donau GmbH & Co KGProbstdorfAustria
  3. 3.Institute for Plant Production SciencesNyonSwitzerland
  4. 4.INCDA (NARDI) FunduleaFunduleaRomania
  5. 5.INRAUMR 1349 IGEPPLe RheuFrance
  6. 6.KielGermany

Personalised recommendations