, Volume 198, Issue 2, pp 277–288 | Cite as

Comparison and development of EST–SSRs from two 454 sequencing libraries of Gossypium barbadense

  • Hantao Wang
  • Ximei Li
  • Wenhui Gao
  • Xin Jin
  • Xianlong Zhang
  • Zhongxu Lin


EST–SSRs of Gossypium barbadense are mainly developed using traditional Sanger sequencing. However, due to the high cost and low throughput of Sanger sequencing, it is necessary to use high throughput sequencing technology for the development of more ESTs to more effectively analyze the structure and function of this species. In this study, a G. barbadense acc. 3–79 unnormalized fiber cDNA library (219.63 Mb) and a G. barbadense cv. Hai7124 normalized root cDNA library (204.61 Mb) were obtained by 454 sequencing. EST–SSRs were identified from the two libraries, and only 7,255 SSRs were obtained from the unnormalized library, with an average frequency of 1/31.00 kb. In contrast, 16,087 SSRs were obtained from the normalized library, with an average frequency of 1/13.02 kb. The frequencies of dinucleotides and tetranucleotides in the two libraries were very different. Comparing the two libraries, we found that a normalized cDNA library is more efficient for mining SSRs. Integrating the two libraries allowed the development of 1,129 EST–SSR markers, and 311 polymorphic loci were integrated into our interspecific BC1 genetic linkage map. The mapping results showed that the distribution of EST–SSRs on sub-genomes and chromosomes was uneven; however, the distribution of the mapped G. barbadense EST–SSRs on homologous chromosomes was similar, with the exception of Chr05 versus Chr19 and Chr12 versus Chr26. This study provided new EST–SSR markers that will facilitate studies on cotton genetics and breeding.


Cotton G. barbadense 454 Sequencing EST–SSRs Interspecific map 



This work was financially supported by the National Basic Research Program (No. 2010CB126001) and the National Science Foundation of China (No. 31171593).

Supplementary material

10681_2014_1104_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1,103 kb)
10681_2014_1104_MOESM2_ESM.xls (784 kb)
Supplementary material 2 (XLS 783 kb)
10681_2014_1104_MOESM3_ESM.doc (71 kb)
Supplementary material 3 (DOC 71 kb)


  1. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755PubMedCentralPubMedCrossRefGoogle Scholar
  2. Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE 7(9):e45739PubMedCentralPubMedCrossRefGoogle Scholar
  3. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  4. Diguistini S, Liao NY, Platt D, Robertson G, Seidel M, Chan SK, Docking TR, Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil C, Jones SJ (2009) De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 10:R94PubMedCentralPubMedCrossRefGoogle Scholar
  5. Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17(1):69–73PubMedCentralPubMedCrossRefGoogle Scholar
  6. Götz S, García-Gómez JM, Terol J, Williams TD, Nueda MJ, Robles M, Talón ML, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMedCentralPubMedCrossRefGoogle Scholar
  7. Guo WZ, Wang W, Zhou BL, Zhang TZ (2006) Cross-species transferability of G. arboreum-derived EST–SSRs in the diploid species of Gossypium. Theor Appl Genet 112:1573–1581PubMedCrossRefGoogle Scholar
  8. Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Shi B, Zhang TZ (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541PubMedCentralPubMedCrossRefGoogle Scholar
  9. Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genomics 272:308–327CrossRefGoogle Scholar
  10. Han ZG, Wang CB, Song XL, Guo WZ, Gou JY, Li CH, Chen XY, Zhang TZ (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST–SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439PubMedCrossRefGoogle Scholar
  11. He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang XY, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197CrossRefGoogle Scholar
  12. Jena SN, Srivastava A, Rai KM, Ranjan A, Singh SK, Nisar T, Srivastava M, Bag SK, Mantri S, Asif MH, Yadav HK, Tuli R, Sawant SV (2012) Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theor Appl Genet 124:565–576PubMedCrossRefGoogle Scholar
  13. Karaca M, Saha S, Jenkins JN, Zipf A, Kohel R, Stelly DM (2002) Simple sequence repeat (SSR) markers linked to the Ligon Lintless (Li) mutant in cotton. J Hered 93(3):221–224PubMedCrossRefGoogle Scholar
  14. Kosambi DD (1994) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  15. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135:145–151PubMedCrossRefGoogle Scholar
  16. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626PubMedCrossRefGoogle Scholar
  17. Li XM, Yuan DJ, Wang HT, Chen XM, Wang B, Lin ZX, Zhang XL (2012) Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP. Genome 55:459–470PubMedCrossRefGoogle Scholar
  18. Li XM, Yuan DJ, Zhang JF, Lin ZX, Zhang XL (2013) Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS ONE 8(1):e54444PubMedCentralPubMedCrossRefGoogle Scholar
  19. Lin ZX, He DH, Zhang XL, Nie YC, Guo XP, Feng CD, Stewart JM (2005) Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed 124:180–187CrossRefGoogle Scholar
  20. Liu M (2013) 454-transcriptome sequencing analysis of cotton roots inoculated by verticillium dahlia. Master Dissertation. Huazhong Agricultural UniversityGoogle Scholar
  21. Liu CX, Lin ZX, Zhang XL (2012) Unbiased genomic distribution of genes related to cell morphogenesis in cotton by chromosome mapping. Plant Cell Tiss Organ Cult 108:529–534CrossRefGoogle Scholar
  22. Lv YD, Cai CP, Wang L, Lin SY, Zhao L, Tian LL, Lv JH, Zhang TZ, Guo WZ (2010) Mining, characterization, and exploitation of EST-derived microsatellites in Gossypium barbadense. Chin Sci Bull 55:1889–1893CrossRefGoogle Scholar
  23. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200PubMedCrossRefGoogle Scholar
  24. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175PubMedCrossRefGoogle Scholar
  25. Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST–SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123Google Scholar
  26. Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, Jenkins JN, Brooks TB, Bolek Y, El-Zik KM (2001) New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 5:103–113Google Scholar
  27. Reinisch A, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense, chromosome organization and evolution in a disomic polyploidy genome. Genetics 138:829–847PubMedCentralPubMedGoogle Scholar
  28. Rong JK, Abbey C, Bowers JE, Brubaker CL, Chang C, Peng WC, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulz SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao XP, Zhu LH, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417PubMedCentralPubMedCrossRefGoogle Scholar
  29. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package, Join Map. Plant J 3:739–744CrossRefGoogle Scholar
  30. Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72CrossRefGoogle Scholar
  31. Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320PubMedCrossRefGoogle Scholar
  32. Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  33. Wang CB, Guo WZ, Cai CP, Zhang TZ (2006) Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull 51(5):557–561CrossRefGoogle Scholar
  34. Wang ZY, Li J, Luo ZX, Huang LF, Chen XL, Fang BP, Li YJ, Chen JY, Zhang XJ (2011) Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biol 11:139PubMedCentralPubMedCrossRefGoogle Scholar
  35. Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST–SSR markers. BMC Genom 12:451CrossRefGoogle Scholar
  36. Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genom 7:275CrossRefGoogle Scholar
  37. Wu HL, Chen D, Li JX, Yu B, Qiao XY, Huang HL, He YM (2013) De novo characterization of leaf transcriptome using 454 sequencing and development of EST–SSR markers in Tea (Camellia sinensis). Plant Mol Biol Rep 31:524–538CrossRefGoogle Scholar
  38. Xiong Y, Li QB, Kang BH, Chourey PS (2011) Discovery of genes expressed in basal endosperm transfer cells in maize using 454 transcriptome sequencing. Plant Mol Biol Rep 29:835–847CrossRefGoogle Scholar
  39. Yu Y, Wang ZW, Feng CH, Zhang YX, Lin ZX, Zhang XL (2008) Genetic evaluation of EST–SSRs derived from Gossypium herbaceum. Acta Agron Sin 34:2085–2091CrossRefGoogle Scholar
  40. Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX, Zhang XL (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genom 12:15CrossRefGoogle Scholar
  41. Yuan DJ, Tu LL, Zhang XL (2011) Generation, annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L. PLoS ONE 6(7):e22758PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zeng SH, Xiao G, Guo J, Fei ZJ, Xu YQ, Roe BA, Wang Y (2010) Development of a EST dataset and characterization of EST–SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genom 11(1):94CrossRefGoogle Scholar
  43. Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174PubMedCrossRefGoogle Scholar
  44. Zhang YX, Lin ZX, Li W, Tu LL, Nie YC, Zhang XL (2007) Studies of new EST–SSRs derived from Gossypium barbadense. Chin Sci Bull 52:2522–2531CrossRefGoogle Scholar
  45. Zhang YX, Lin ZX, Xia QZ, Zhang MJ, Zhang XL (2008) Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51(7):534–546PubMedCrossRefGoogle Scholar
  46. Zhu LF, Tu LL, Zeng FC, Liu DQ, Zhang XL (2005) An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agron Sin 31:1657–1659Google Scholar
  47. Zhu LF, Zhang XL, Tu LL, Zeng FC, Nie YC, Guo XP (2007) Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. J Plant Pathol 89(1):41–45Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hantao Wang
    • 1
  • Ximei Li
    • 1
  • Wenhui Gao
    • 1
  • Xin Jin
    • 1
  • Xianlong Zhang
    • 1
  • Zhongxu Lin
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina

Personalised recommendations