Euphytica

, Volume 197, Issue 3, pp 369–385 | Cite as

Genetic variance models for the evaluation of resistance to powdery scab (Spongospora subterranea f. sp. subterranea) from long-term potato breeding trials

  • M. F. Paget
  • P. A. Alspach
  • R. A. Genet
  • L. A. Apiolaza
Article

Abstract

Breeding for resistance to soil-borne powdery scab in potato is an important component of the integrated management of this disease. Different genetic variance models within a mixed model framework were applied to data from long-term potato breeding trials, for the genetic evaluation of breeding lines. The multi-environment trial (MET) data came from 12 growing seasons (“years”, synonymous with environments) of New Zealand field trials screening for resistance to powdery scab on potato tubers. Pedigree information on a total of 1,031 genotypes was available. Additive components of the genetic effects were important with narrow-sense heritability estimates (and 95 % confidence intervals) from single-year analyses ranging from 0.26 (0.20, 0.44) to 0.57 (0.53, 0.85). Spatial components estimated from the residual plot effects were not important for most years and even when they were significant, estimates were small. In MET analyses, different variance structures for the genetic effects were tested; a homogeneous correlation model (CORH) gave a better fit to the data than a factor analytic FAk model of order (k), 1 and 2. The year-to-year genetic correlation estimate from CORH was 0.81 and compared with a range of 0.59–0.95 estimated from the FA1 model. There was no strong evidence of non-additive genetic effects with zero or boundary estimates for most years. Models which included the pedigree provided a better fit to the data than models that did not include this relationship information. There was no evidence for genetic improvement in resistance for powdery scab on tubers in the breeding population studied. This suggests that selection pressure for resistance in the past has been weak and greater consideration should be given to selecting parents on empirical breeding values to genetically improve breeding populations for resistance to powdery scab.

Keywords

Empirical breeding values Genetic parameters Potato breeding programme Multi-environment trials MET Variance components 

References

  1. Baldwin SJ, Genet RA, Butler RC, Jacobs JME (2008) A greenhouse assay for powdery scab (Spongospora subterranea f. sp subterranea) resistance in potato. Potato Res 51:163–173. doi:10.1007/s11540-008-9100-7 CrossRefGoogle Scholar
  2. Balzarini M (2001) Applications of mixed models in plant breeding. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI Publishing, Wallingford, pp 353–363CrossRefGoogle Scholar
  3. Beeck CP, Cowling WA, Smith AB, Cullis BR (2010) Analysis of yield and oil from a series of canola breeding trials. Part I. Fitting factor analytic mixed models with pedigree information. Genome 53:992–1001. doi:10.1139/g10-051 PubMedCrossRefGoogle Scholar
  4. Bhattacharya SK, Sheo R, Dwivedi R (1985) Sources of resistance to powdery scab in potatoes. Indian Phytopathol 38:174–175Google Scholar
  5. Burgueño J, Crossa J, Cornelius PL, Trethowan R, McLaren G, Anitha K (2007) Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes. Crop Sci 47:311–320. doi:10.2135/cropsci2006.09.0564 CrossRefGoogle Scholar
  6. Burgueño J, Crossa J, Cotes JM, San Vicente F, Das B (2011) Prediction assessment of linear mixed models for multi-environment trials. Crop Sci 51:944–954. doi:10.2135/cropsci2010.07.0403 CrossRefGoogle Scholar
  7. Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719. doi:10.2135/cropsci2011.06.0299 CrossRefGoogle Scholar
  8. Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual, VSN International, Hemel Hempstead, UK. http://www.vsni.co.uk/downloads/asreml/release3/asreml-R.pdf
  9. Crossa J, Burgueño J, Cornelius PL, McLaren G, Trethowan R, Anitha K (2006) Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci 46:1722–1733. doi:10.2135/cropsci2005.11-0427 CrossRefGoogle Scholar
  10. Cullis BR, Smith AB, Coombes NB (2006) On the design of early generation trials with correlated data. J Agric Biol Environ Stat 11:381–393CrossRefGoogle Scholar
  11. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman Group Limited, HarlowGoogle Scholar
  12. Falloon RE (2008) Control of powdery scab of potato: towards integrated disease management. Am J Potato Res 85:253–260. doi:10.1007/s12230-008-9022-6 CrossRefGoogle Scholar
  13. Falloon RE, Viljanenrollinson SLH, Coles GD, Poff JD (1995) Disease severity keys for powdery and downy mildews of pea, and powdery scab of potato. N Z J Crop Hortic Sci 23:31–37CrossRefGoogle Scholar
  14. Falloon RE, Genet RA, Wallace AR, Butler RC (2003) Susceptibility of potato (Solanum tuberosum) cultivars to powdery scab (caused by Spongospora subterranea f. sp subterranea), and relationships between tuber and root infection. Australas Plant Pathol 32:377–385. doi:10.1071/ap03040 CrossRefGoogle Scholar
  15. Falloon R, Curtin D, Lister R, Butler R (2005) Root function and growth of potato plants reduced by Spongospora subterranea infection. Am J Potato Res 82:68Google Scholar
  16. Falloon RE, Merz U, Lister RA, Wallace AR, Hayes SP (2011) Morphological enumeration of resting spores in sporosori of the plant pathogen Spongospora subterranea. Acta Protozool 50:121–132Google Scholar
  17. Gau RD, Merz U, Falloon RE, Brunner PC (2013) Global genetics and invasion history of the potato powdery scab pathogen, Spongospora subterranea f.sp subterranea. PLoS ONE 8(6):e67944. doi:10.1371/journal.pone.0067944 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Genet RA, Falloon RE, Braam WF, Wallace AR, Jacobs JME, Baldwin SJ (2004) Resistance to powdery scab (Spongospora subterranea) in potatoes—a key component of integrated disease management. In: Nichols MA (ed) Proceedings of the First International Symposium on root and tuber crops: food down under. Palmerston North, New Zealand, pp 57–62Google Scholar
  19. Gilmour AR, Cullis BR, Verbyla AP, Gleeson AC (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–293CrossRefGoogle Scholar
  20. Gilmour AR, Gogel B, Cullis BR, Thompson R (2006) ASReml, user guide. Release 2.0. VSN International Ltd, Hemel HempsteadGoogle Scholar
  21. Gleeson AC (1997) Spatial analysis. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 69–85Google Scholar
  22. Hardner CM, Bally ISE, Wright CL (2012) Prediction of breeding values for average fruit weight in mango using a multivariate individual mixed model. Euphytica 186:463–477. doi:10.1007/s10681-012-0639-7 CrossRefGoogle Scholar
  23. Harrison JG, Searle RJ, Williams NA (1997) Powdery scab disease of potato—a review. Plant Pathol 46:1–25. doi:10.1046/j.1365-3059.1997.d01-214.x CrossRefGoogle Scholar
  24. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4(2):e1000008. doi:10.1371/journal.pgen.1000008 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kelly AM, Smith AB, Eccleston JA, Cullis BR (2007) The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials. Crop Sci 47:1063–1070. doi:10.2135/cropsci2006.08.0540 CrossRefGoogle Scholar
  26. Kelly AM, Cullis BR, Gilmour AR, Eccleston JA, Thompson R (2009) Estimation in a multiplicative mixed model involving a genetic relationship matrix. Genet Sel Evol 41(1):33. doi:10.1186/1297-9686-41-33 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kerr RJ, Li L, Tier B, Dutkowski GW, McRae TA (2012) Use of the numerator relationship matrix in genetic analysis of autopolyploid species. Theor Appl Genet 124:1271–1282PubMedCrossRefGoogle Scholar
  28. Lister R, Falloon R, Curtin D, Butler R (2004) Spongospora subterranea reduces host (Solanum tuberosum) growth. Proceedings of the 3rd Australasian Soilborne Diseases Symposium. South Australian Research and Development Institute, Adelaide, pp 135–136Google Scholar
  29. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc., SunderlandGoogle Scholar
  30. Merz U (2008) Powdery scab of potato—occurrence, life cycle and epidemiology. Am J Potato Res 85:241–246. doi:10.1007/s12230-008-9019-1 CrossRefGoogle Scholar
  31. Merz U, Falloon RE (2009) Review: powdery scab of potato—increased knowledge of pathogen biology and disease epidemiology for effective disease management. Potato Research 52:17–37. doi:10.1007/s11540-008-9105-2 CrossRefGoogle Scholar
  32. Merz U, Lees AK, Sullivan L, Schwarzel R, Hebeisen T, Kirk HG, Bouchek-Mechiche K, Hofferbert HR (2012) Powdery scab resistance in Solanum tuberosum: an assessment of cultivar ×  environment effect. Plant Pathol 61:29–36. doi:10.1111/j.1365-3059.2011.02489.x CrossRefGoogle Scholar
  33. Meyer K (2009) Factor-analytic models for genotype × environment type problems and structured covariance matrices. Genet Sel Evol 41:21. doi:10.1186/1297-9686-41-21 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Mrode RA (1996) Linear models for the prediction of animal breeding values. CAB International, WallingfordGoogle Scholar
  35. Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H (2006) Joint modeling of additive and non-additive genetic line effects in single field trials. Theor Appl Genet 113:809–819. doi:10.1007/s00122-006-0333-z PubMedCrossRefGoogle Scholar
  36. Oakey H, Verbyla AP, Cullis BR, Wei XM, Pitchford WS (2007) Joint modeling of additive and non-additive (genetic line) effects in multi-environment trials. Theor Appl Genet 114:1319–1332. doi:10.1007/s00122-007-0515-3 PubMedCrossRefGoogle Scholar
  37. Piepho HP (1997) Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics 53:761–767CrossRefGoogle Scholar
  38. Piepho HP (1998) Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures. Theor Appl Genet 97:195–201CrossRefGoogle Scholar
  39. Piepho HP, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888. doi:10.1534/genetics.107.074229 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Piepho HP, Möhring J, Melchinger AE, Büchse A (2008a) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228. doi:10.1007/s10681-007-9449-8 CrossRefGoogle Scholar
  41. Piepho HP, Richter C, Williams E (2008b) Nearest neighbour adjustment and linear variance models in plant breeding trials. Biom J 50:164–189. doi:10.1002/bimj.200710414 PubMedCrossRefGoogle Scholar
  42. R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  43. Rv Berloo, Hutten RCB, Eck HJV, Visser RGF (2007) An online potato pedigree database resource. Potato Res 50:45–57CrossRefGoogle Scholar
  44. Shah FA, Falloon RE, Butler RC, Lister RA (2012) Low amounts of Spongospora subterranea sporosorus inoculum cause severe powdery scab, root galling and reduced water use in potato (Solanum tuberosum). Australas Plant Pathol 41:219–228. doi:10.1007/s13313-011-0110-6 CrossRefGoogle Scholar
  45. Smith AB, Cullis BR, Thompson R (2001) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138–1147. doi:10.1111/j.0006-341X.2001.01138.x PubMedCrossRefGoogle Scholar
  46. Smith AB, Cullis BR, Thompson R (2005) The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agric Sci 143:449–462. doi:10.1017/s0021859605005587 CrossRefGoogle Scholar
  47. So YS, Edwards J (2011) Predictive ability assessment of linear mixed models in multi-environment trials in corn. Crop Sci 51:542–552. doi:10.2135/cropsci2010.06.0338 CrossRefGoogle Scholar
  48. Thompson R, Cullis B, Smith A, Gilmour A (2003) A sparse implementation of the average information algorithm for factor analytic and reduced rank variance models. Austral NZ J Stat 45:445–459. doi:10.1111/1467-842x.00297 CrossRefGoogle Scholar
  49. van de Graaf P, Wale SJ, Lees AK (2007) Factors affecting the incidence and severity of Spongospora subterranea infection and galling in potato roots. Plant Pathol 56:1005–1013. doi:10.1111/j.1365-3059.2007.01686.x CrossRefGoogle Scholar
  50. Wastie RL (1991) Resistance to powdery scab of seedling progenies of Solanum tuberosum. Potato Res 34:249–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. F. Paget
    • 1
  • P. A. Alspach
    • 2
  • R. A. Genet
    • 1
  • L. A. Apiolaza
    • 3
  1. 1.The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
  2. 2.The New Zealand Institute for Plant & Food Research LimitedMotuekaNew Zealand
  3. 3.School of ForestryUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations