, Volume 195, Issue 2, pp 287–300 | Cite as

Spanish onion landraces (Allium cepa L.) as sources of germplasm for breeding calçots: a morphological and molecular survey

  • J. Simó
  • L. Pascual
  • J. Cañizares
  • F. Casañas


Calçots are the immature floral stems of second-year resprouts of the ‘Blanca Tardana de Lleida’ (BTL) onion landrace, and to date, breeding has used only a few populations. So, we aimed to increase our knowledge of the variability of BTL and to explore its characteristics and genetic dissimilarity with other varieties that might be used in calçot breeding programs. We analyzed the agronomic and morphological traits of four populations of BTL, two synthetic varieties of BTL, 20 prestigious Spanish landraces, and 4 exotic onion landraces. Furthermore, we used three combinations of AFLP primers and seven microsatellites to analyze their genetic background. The Spanish landraces (including BTL) shared a large part of their genetic background, which showed considerable variability (heterozygosity around 0.5). Morphological traits also had high variability, so multiple breeding strategies can be used, ranging from intravarietal selection to crossings between populations to take advantage of the heterosis, both for the bulb and for the calçot improvement.


Calçots Onions AFLP-SSR Spanish landraces Breeding Germplasm 


  1. Araki N, Masuzaki SI, Tsukazaki H, Yaguchi S, Wako T, Tashiro Y, Yamauchi N, Shigyo M (2010) Development of microsatellite markers in cultivated and wild species of sections Cepa and Phyllodolon in Allium. Euphytica 173(3):321–328CrossRefGoogle Scholar
  2. Belaj A, Leon L, Satovic Z, de la Rosa R (2011) Variability of wild olives (Olea europaea subsp europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Sci Hortic 129(4):561–569CrossRefGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier (France), Laboratoire Génome, Populations, Interactions. CNRS UMR 5171, Université de Montpellier IIGoogle Scholar
  4. Benham J, Jeung J-U, Jasieniuk M, Kanazin V, Blake T (1999) Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J Agric Genom 4:3Google Scholar
  5. Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:353–359CrossRefGoogle Scholar
  6. Bradeen JM, Havey MJ (1995) Restriction-fragment-length-polymorphisms reveal considerable nucelar divergence within a well-supported maternal clade in Allium section cepa (Alliaceae). Am J Bot 82(11):1455–1462CrossRefGoogle Scholar
  7. Carravedo M, Mallor C (2007) Variedades autóctonas de cebollas españolas. Centro de Investigación y Tecnología Agroalimentaria, ZaragozaGoogle Scholar
  8. Casals J, Pascual L, Canizares J, Cebolla-Cornejo J, Casanas F, Nuez F (2011) The risks of success in quality vegetable markets: possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci Hortic 130(1):78–84CrossRefGoogle Scholar
  9. Casals J, Pascual L, Cañizares J, Cebolla-Cornejo J, Casañas F, Nuez F (2012) Genetic basis of long shelf life and variability into Penjar tomato. Genet Resour Crop Evol 59(2):219–229CrossRefGoogle Scholar
  10. Castell V, Diez MJ (2000) Colección de semillas de cebolla del Centro de Conservación y Mejora de la Agrodiversidad Valenciana. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, EspanyaGoogle Scholar
  11. Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1(4):19–21Google Scholar
  12. dos Santos MDM, Ragassi CF, Fonseca MED, Buzar AGR, Oliveira VR, de Melo PCT, Boiteux LS (2012) Genetic diversity of tropical-adapted onion germplasm assessed by RAPD markers. Hortic Bras 30(1):112–118CrossRefGoogle Scholar
  13. Fischer D, Bachmann K (2000) Onion microsatellites for germplasm analysis and their use in assessing intra- and interspecific relatedness within the subgenus Rhizirideum. Theor Appl Genet 101(1):153–164CrossRefGoogle Scholar
  14. Formisano G, Roig C, Esteras C, Ercolano MR, Nuez F, Monforte AJ, Pico MB (2012) Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genet Resour Crop Evol 59(6):1169–1184CrossRefGoogle Scholar
  15. Havey MJ (1991) Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome. Theor Appl Genet 81(6):752–757PubMedCrossRefGoogle Scholar
  16. Jakse J, Martin W, McCallum J, Havey MJ (2005) Single nucleotide polymorphisms, indels, and simple sequence repeats for onion cultivar identification. J Am Soc Hortic Sci 130(6):912–917Google Scholar
  17. Joshi SP, Ranjekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77(2):230–240Google Scholar
  18. Khar A, Jakse J, Havey MJ (2008) Segregations for onion bulb colors reveal that red is controlled by at least three loci. J Am Soc Hortic Sci 133(1):42–47Google Scholar
  19. Khar A, Lawande KE, Negi KS (2011) Microsatellite marker based analysis of genetic diversity in short day tropical Indian onion and cross amplification in related Allium spp. Genet Resour Crop Evol 58(5):741–752CrossRefGoogle Scholar
  20. Masuzaki S, Araki N, Yamauchi N, Yamane N, Wako T, Kojima A, Shigyo M (2006) Chromosomal locations of microsatellites in onion. HortScience 41(2):315–318Google Scholar
  21. McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, Havey M (2006) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112(5):958–967PubMedCrossRefGoogle Scholar
  22. McCallum J, Thomson S, Pither-Joyce M, Kenel F, Clarke A, Havey MJ (2008) Genetic diversity analysis and single-nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag-simple sequence repeat markers. J Am Soc Hortic Sci 133(6):810–818Google Scholar
  23. Mendiburu F (2010). Agricolae: Statistical Procedures for Agricultural Research, R ProgramGoogle Scholar
  24. Nei M (1978) Estimation of average heterozygosity and geneticdistance from a small number of individuals. Genetics 89(3):583–590PubMedGoogle Scholar
  25. Pérez-Vega E, Campa A, De la Rosa L, Giraldez R, Ferreira JJ (2009) Genetic diversity in a core collection established from the main bean Genbank in Spain. Crop Sci 49(4):1377–1386CrossRefGoogle Scholar
  26. Sanchez E, Sifres A, Casanas F, Nuez F (2007) Common bean (Phaseolus vulgaris L.) landraces in Catalonia, a Mesoamerican germplasm hotspot to be preserved. J Hortic Sci Biotechnol 82(4):529–534Google Scholar
  27. Santos CAF, Oliveira VR, Rodrigues MA, Ribeiro HLC (2010) Molecular characterization of onion cultivars using microsatellite markers. Pesquisa Agropecuaria Brasileira 45(1):49–55CrossRefGoogle Scholar
  28. Santos CAF, Oliveira VR, Rodrigues MA, Ribeiro HLC, Silva GO (2011) Genetic similarity among onion cultivars of different types and origins, based on AFLP markers. Hortic Bras 29(1):32–37CrossRefGoogle Scholar
  29. Sarikamis G, Yanmaz R, Ermis S, Bakir M, Yuksel C (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet Mol Res 9(1):591–600PubMedCrossRefGoogle Scholar
  30. Simó J, Romero del Castillo R, Almirall A, Casañas F (2012a) ‘Roquerola’ and ‘Montferri’, first improved onion (Allium cepa L.) cultivars for ‘Calçots’ production. Hortscience 47(6):801–802Google Scholar
  31. Simó J, Romero del Castillo R, Casañas F (2012b) Tools for breeding ‘calçots’ (Allium cepa L.), an expanding crop. Afr J Biotechnol 11(50):11065–11073Google Scholar
  32. Simó J, Valero J, Plans M, Romero del Castillo R, Casañas F (2013) Breeding onions (Allium cepa L.) for consumption as ‘calçots’ (second-year resprouts). Sci Hortic 152:74–79CrossRefGoogle Scholar
  33. Soengas P, Cartea ME, Francisco M, Lema M, Velasco P (2011) Genetic structure and diversity of a collection of Brassica rapa subsp. rapa L. revealed by simple sequence repeat markers. J Agric Sci 149:617–624CrossRefGoogle Scholar
  34. Tanikawa T, Takagi M, Ichii M (2002) Cultivar identification and genetic diversity in onion (Allium cepa L.) as evaluated by random amplified polymorphic DNA (RAPD) analysis. J Jpn Soc Hortic Sci 71(2):249–251CrossRefGoogle Scholar
  35. van Heusden AW, van Ooijen JW, Vrielink-van Ginkel R, Verbeek WHJ, Wietsma WA, Kik C (2000) A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP (TM)) markers. Theor Appl Genet 100(1):118–126CrossRefGoogle Scholar
  36. Weir BS (1996) Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sinauer Associates Inc., SunderlandGoogle Scholar
  37. Yao QL, Chen FB, Fang P, Zhou GF, Fan YH, Zhang ZR (2012) Genetic diversity of Chinese vegetable mustard (Brassica juncea Coss) landraces based on SSR data. Biochem Syst Ecol 45:41–48CrossRefGoogle Scholar
  38. Zhang XA, Zhang YJ, Yan R, Han JG, Fuzeng H, Wang JH, Cao K (2010) Genetic variation of white clover (Trifolium repens L.) collections from China detected by morphological traits, RAPD and SSR. Afr J Biotechnol 9(21):3032–3041Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Simó
    • 1
  • L. Pascual
    • 2
    • 3
  • J. Cañizares
    • 3
  • F. Casañas
    • 1
  1. 1.Departament d’Enginyeria Agroalimentària i Biotecnologia, Escola Superior d’AgriculturaUniversitat Politècnica de Catalunya/Fundació Miquel AgustíCastelldefelsSpain
  2. 2.Unité de Génétique et Amélioration des Fruits et Légumes, UR1052INRAAvignonFrance
  3. 3.Instituto Universitario de Conservación y Mejora de la Agrodiversidad ValencianaUniversidad Politècnica de ValenciaValenciaSpain

Personalised recommendations