, Volume 194, Issue 1, pp 109–124 | Cite as

Genomic analysis in three Hylocereus species and their progeny: evidence for introgressive hybridization and gene flow

  • Aroldo Cisneros
  • Noemi Tel-ZurEmail author


Interest in vine cacti of the genus Hylocereus (Cactaceae) has grown markedly due to their high economic potential as exotic fruit crops. Thus, we investigate the genomic and genetic characteristics of 18 accessions belonging to three Hylocereus species, from which were produced eight progeny from self-pollination and 51 interspecific-homoploid and -interploid hybrids. We reported ploidy estimation, allele frequencies, polymorphic information content (PIC) and genetic relationships observed among the Hylocereus species and their progeny. The progeny were diploid, triploid, tetraploid, pentaploid, or hexaploid. Each primer combination used in this work amplified different sets of restriction fragments ranging from 74 to 102 bands. Among the total number of bands observed for the Hylocereus accessions and their progeny, 97.5 and 98.1 %, respectively, were polymorphic. The variability of PIC between primers, species and hybrids suggested high heterozygosity and gene flow between them. In addition, amplified fragment length polymorphism (AFLP) markers were used to successfully identify one of the H. megalanthus accessions beforehand as the unknown male progenitor of the allotriploid S-75. AFLP markers demonstrate the efficacy for assessing genetic relationships and introgression; and provide strong support for the pursuit of additional breeding programs of these fruit crop.


Allele frequency Amplified fragment length polymorphism Genome size Ploidy Molecular markers Paternity 



The authors gratefully acknowledge to Prof. G. Grafi for instructive discussions and valuable comments on the manuscript. We want to extend our gratitude to Mr. J. Mouyal and to the late Dr. B. Schneider for their valuable assistance, and to Mr. P. Martin for editing the manuscript.


This work was partial supported by Ben Gurion University of the Negev at the Kreitman School for Advanced Graduate Studies (Zin Fellowship to A.C.); and at the Albert Katz International School for Desert Studies (Doctoral fellowship to A.C.).

Supplementary material

10681_2013_979_MOESM1_ESM.pdf (21 kb)
Supplementary material 1 (PDF 20 kb)
10681_2013_979_MOESM2_ESM.pdf (18 kb)
Supplementary material 2 (PDF 18 kb)
10681_2013_979_MOESM3_ESM.pdf (21 kb)
Supplementary material 3 (PDF 21 kb)


  1. Al-Niemi T, Weeden NF, McCown BH, Hoch WA (2012) Genetic analysis of an interspecific cross in ornamental Viburnum (Viburnum). J Hered 103:2–12PubMedCrossRefGoogle Scholar
  2. Arakaki M, Speranza P, Soltis PS, Soltis DE (2013) Genetic variability of an unusual apomictic triploid cactus—Haageocereus tenuis Ritter—from the Coast of Central Peru. J Hered 104:127–133PubMedCrossRefGoogle Scholar
  3. Cisneros A, Tel-Zur N (2010) Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae). Euphytica 174:73–82CrossRefGoogle Scholar
  4. Cisneros A, Benega Garcia R, Tel-Zur N (2013) Creation of novel interspecific-interploid Hylocereus hybrids (Cactaceae) via embryo rescue. Euphytica 189:433–443CrossRefGoogle Scholar
  5. Clark-Tapia R, Alfonso-Corrado C, Eguiarte LE, Molina-Freaner F (2005) Clonal diversity and distribution in Stenocereus eruca (Cactaceae), a narrow endemic cactus of the Sonoran Desert. Am J Bot 92:272–278PubMedCrossRefGoogle Scholar
  6. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458CrossRefGoogle Scholar
  7. de Faria-Tavares JS, Garcia Martin P, Mangolin CA, de Oliveira-Collet SA, Machado MFPS (2013) Genetic relationships among accessions of mandacaru (Cereus spp.: Cactaceae) using amplified fragment length polymorphisms (AFLP). Bioch Syst Ecol 48:12–19CrossRefGoogle Scholar
  8. Dixon CJ, Schönswetter P, Suda J, Wiedermann MM, Schneeweiss GM (2009) Reciprocal Pleistocene origin and postglacial range formation of an allopolyploid and its sympatric ancestors (Androsace adfinis group, Primulaceae). Mol Phylogenet Evol 50:74–83PubMedCrossRefGoogle Scholar
  9. Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109:48–54PubMedCrossRefGoogle Scholar
  10. Frankham R, Ballou J, Briscoe D (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Freeland JR, Kirk H, Petersen SD (2011) Molecular Ecology. Wiley, ChichesterGoogle Scholar
  12. Garcia C, Jordano P, Godoy JA (2007) Contemporary pollen and seed dispersal in a Prunus mahaleb population: patterns in distance and direction. Mol Ecol 16:1947–1955PubMedCrossRefGoogle Scholar
  13. Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048PubMedCrossRefGoogle Scholar
  14. Godoy JA, Jordano P (2001) Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol Ecol 10:2275–2283PubMedCrossRefGoogle Scholar
  15. Grivet D, Smouse PE, Sork VL (2005) A novel approach to an old problem: tracking dispersed seeds. Mol Ecol 14:3585–3595PubMedCrossRefGoogle Scholar
  16. Ha WY, Shaw PC, Liu J, Yau FCF, Wang J (2002) Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 50:1871–1875PubMedCrossRefGoogle Scholar
  17. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286PubMedCrossRefGoogle Scholar
  18. Isagi Y, Saito D, Kawaguchi H, Tateno R, Watanabe S (2007) Effective pollen dispersal is enhanced by the genetic structure of an Aesculus turbinate population. J Ecol 95:983–990CrossRefGoogle Scholar
  19. Iwaizumi MG, Takahashi M, Watanabe A, Ubukata M (2009) Simultaneous evaluation of paternal and maternal immigrant gene flow and the implications for the overall genetic composition of Pinus densiflora dispersed seeds. J Hered 101:144–153PubMedCrossRefGoogle Scholar
  20. Jiménez JP, Brenes A, Fajardo D, Salas A, Spooner DM (2008) The use and limits of AFLP data in the taxonomy of polyploid wild potato species in Solanum series Conicibaccata. Conserv Genet 9:381–387CrossRefGoogle Scholar
  21. Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523PubMedCrossRefGoogle Scholar
  22. Jones FA, Chen J, Weng GJ, Hubbell SP (2005) A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). Amer Nat 166:543–555CrossRefGoogle Scholar
  23. Kiefer C, Dobeš C, Sharbel TF, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera—A genus and continental-wide perspective. Mol Phylog Evol 52:303–311CrossRefGoogle Scholar
  24. Krauss S (1999) Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Mol Ecol 8:217–226CrossRefGoogle Scholar
  25. Labra M, Grassi F, Bardini M (2003) Genetic relationship in Opuntia Mill. genus (Cactaceae) detected by molecular marker. Plant Sci 165:1129–1136CrossRefGoogle Scholar
  26. Legaria-Solano JP, Alvarado-Cano ME, Gaspar-Hernández R (2005) Genetic diversity in pitahaya (Hylocereus undatus Haworth. Britton and Rose). Rev Fitotec Mex 28:179–185Google Scholar
  27. Lian C, Goto S, Kubo T, Takahashi Y, Nakagawa M, Hogetsu T (2008) Nuclear and chloroplast microsatellite analysis of Abies sachalinensis regeneration on fallen logs in a subboreal forest in Hokkaido, Japan. Mol Ecol 17:2948–2962PubMedCrossRefGoogle Scholar
  28. Lichtenzveig J, Abbo S, Nerd A, Tel-Zur N, Mizhrahi Y (2000) Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. Am J Bot 87:1058–1065PubMedCrossRefGoogle Scholar
  29. Mc Gregor CE, Lambert CA, Greyling MM, Loue JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144CrossRefGoogle Scholar
  30. Merten S (2003) A review of Hylocereus production in the United States. J PACD 5:98–105Google Scholar
  31. Mizrahi Y, Nerd A (1999) Climbing and columnar cacti, new arid land fruit crops. In: Janick J (ed) Perspective on new crops and new uses. ASHS Press, Alexandria, pp 358–366Google Scholar
  32. Moghaddam M, Omidbiagi R, Naghavi MR (2011) Evaluation of genetic diversity among Iranian accessions of Ocimum spp. using AFLP markers. Biochem Syst Ecol 39:619–626CrossRefGoogle Scholar
  33. Negrón-Ortiz V (2007) Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean islands. Am J Bot 94:1360–1370PubMedCrossRefGoogle Scholar
  34. Nilsen LB, Dhillion SS, Camargo-Ricalde SL (2005) Traditional knowledge and genetic diversity of Opuntia pilifera (Cactaceae) in the Tehuacán-Cuicatlán valley, México. Econ Bot 59:366–376CrossRefGoogle Scholar
  35. Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568CrossRefGoogle Scholar
  36. Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214CrossRefGoogle Scholar
  37. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Accessed 9 March 2013
  38. Plume O, Straub SC, Tel-Zur N, Cisneros A, Schneider B, Doyle JJ (2013) Testing a hypothesis of intergeneric allopolyploidy in vine cacti (Cactaceae: Hylocereeae). Syst Bot 38(3):104–117CrossRefGoogle Scholar
  39. Rahimmalek M, Tabatabaei BES, Arzani A, Etemadi N (2009) Assessment of genetic diversity among and within Achillea species using amplified fragment length polymorphism (AFLP). Biochem Syst Ecol 37:354–361CrossRefGoogle Scholar
  40. Resende AG, Mangolin CA, Machado MFPS (2010) Somaclonal variation in Cereus peruvianus Mill. (Cactaceae): its potential to generate new varieties and broaden the species’s genetic basis. J Basic Appl Genet 21:33–42Google Scholar
  41. Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134CrossRefGoogle Scholar
  42. Schnabel A (1998) Parentage analysis in plants: mating systems, gene flow, and relative fertilities. In: Carvalho GR (ed) Advances in molecular ecology. IOS, The Netherlands, pp 173–189Google Scholar
  43. Segura S, Scheinvar L, Olalde G, Leblanc O, Filardo S, Muratalla A, Gallegos C, Flores C (2007) Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet Resour Crop Evol 54:1033–1041CrossRefGoogle Scholar
  44. Shedbalkar UU, Adki VS, Jadhav JP, Bapat VA (2010) Opuntia and other cacti: applications and biotechnological insights. Trop Plant Biol 3:136–150CrossRefGoogle Scholar
  45. Smouse PE, Sork VL, Scofield DG, Grivet D (2012) Using seedling and pericarp tissues to determine maternal parentage of dispersed valley oak recruits. J Hered 103:250–259PubMedCrossRefGoogle Scholar
  46. Sostaric I, Liber Z, Grdisa M, Marin PD, Stevanovic ZD, Satovic Z (2012) Genetic diversity and relationships among species of the genus Thymus L. (section Serpyllum). Flora 207:654–661CrossRefGoogle Scholar
  47. Stappen JV, Weltjens I, Gama Lopez S, Volckaert G (2000) Genetic diversity in Mexican Stylosanthes humilis as revealed by AFLP, compared to the variability of S. humilis accessions of South American origin. Euphytica 113:145–154CrossRefGoogle Scholar
  48. Teege P, Kadereit J, Kadereit G (2011) Tetraploid European Salicornia species are best interpreted as ecotypes of multiple origins. Flora 206:910–920CrossRefGoogle Scholar
  49. Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y (2003) Chromosome doubling in vine cacti hybrids. J Hered 94:329–333PubMedCrossRefGoogle Scholar
  50. Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y (2004a) Clone identification and genetic relationship among vine cacti from the genera Hylocereus and Selenicereus based on RAPD analysis. Sci Hortic 100:279–289CrossRefGoogle Scholar
  51. Tel-Zur N, Abbo S, Bar-Zvi D, Mizhrahi Y (2004b) Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): evidence from hybridization and cytological studies. Ann Bot 94:527–534PubMedCrossRefGoogle Scholar
  52. Tel-Zur N, Mizrahi Y, Cisneros A, Mouyal J, Schneider B, Doyle JJ (2011) Phenotypic and genomic characterization of vine cactus collection (Cactaceae). Genet Resour Crop Evol 58:1075–1085CrossRefGoogle Scholar
  53. Terakawa M, Isagi Y, Matsui K, Yumoto T (2009) Microsatellite analysis of the maternal origin of Myrica rubra seeds in the feces of Japanese macaques. Ecol Res 24:663–670CrossRefGoogle Scholar
  54. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  55. Weiss J, Nerd A, Mizrahi Y (1994) Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience 29:1487–1492Google Scholar
  56. Zuriaga E, Blanca J, Nuez F (2009) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56:663–678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben GurionIsrael

Personalised recommendations