, Volume 191, Issue 1, pp 85–98 | Cite as

VvGAI1 polymorphisms associate with variation for berry traits in grapevine

  • Alba M. VargasEmail author
  • Loïc Le Cunff
  • Patrice This
  • Javier Ibáñez
  • M. Teresa de Andrés


Gibberellins have important effects over different developmental processes in plants and the exogenous application of GA3 has been extensively used in grapevine to improve certain quality traits (to control berry size, set and weight, to decrease cluster compactness and to induce the absence of seeds in grapes). In this study, we performed association analyses using a core collection of 127 table grape accessions in order to identify causal SNPs in the gene VvGAI1, a negative regulator of gibberellins response. Seventeen quantitative descriptors, related with fertility, bunch and berry traits were used for the association analysis with VvGAI1. Fifteen polymorphisms and 15 haplotypes were identified, and some of them associated significantly with important traits for table grape: berry texture, juice yield, and bunch weight. The genetic structure found in the collection of varieties was consistent with their origins, and was included in the association test. In addition, nucleotide and haplotypic diversity, linkage disequilibrium and the possible existence of selection over the gene were also evaluated to support the association test.


Association analysis Table grape Vitis vinifera VvGAI1 



This study was made possible with the funding from the GrapeGen Project (joint venture between Genome Canada and Genoma España), and the AGL2010-15694 from the MICINN (Spain). A.M. Vargas was funded by a predoctoral fellowship from IMIDRA. We thank M. Carmen Fajardo, Carlos González Guillén, Nuria Rodríguez Jiménez, Concepción López Rivas, M. Dolores Vélez, Silvia Hernáiz and Paz Fernández for their technical assistance in the morphological descriptions.

Supplementary material

10681_2013_866_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 52 kb)
10681_2013_866_MOESM2_ESM.tif (110 kb)
Supplementary material 2 (TIFF 109 kb)


  1. Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genomics 2008:574–927CrossRefGoogle Scholar
  2. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192CrossRefPubMedGoogle Scholar
  3. Arroyo-García R, Ruiz-Garcia L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Soylemezoglu G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martínez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714CrossRefPubMedGoogle Scholar
  4. Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-D-xylulose 5-phosphate synthase gene co-localizes with a major QTL aVecting monoterpene content in grapevine. Theor Appl Genet 118:653–669CrossRefPubMedGoogle Scholar
  5. Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850CrossRefPubMedGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  7. Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330CrossRefGoogle Scholar
  8. Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585CrossRefPubMedGoogle Scholar
  9. Chaïb J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR (2010) The grape microvine-a model system for rapid forward and reverse genetics of grapevines. Plant J 62(6):1083–1092PubMedGoogle Scholar
  10. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. doi: 10.1186/1471-2156-3-19 PubMedGoogle Scholar
  11. Chung SM, Staub JE (2003) The development and evaluation of concensus chloroplast SSRs for chloroplast genetic analysis. Theor Appl Genet 107:757–767CrossRefPubMedGoogle Scholar
  12. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol. doi: 10.1186/1471-2229-8-38 PubMedGoogle Scholar
  13. Cunha J, Teixeira Santos M, Carneiro LC, Fevereiro P, Eiras-Dias JE (2009) Portuguese traditional grapevine cultivars and wild vines (Vitis vinifera L.) share morphological and genetic traits. Genet Resour Crop Ev 56:975–989CrossRefGoogle Scholar
  14. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics. doi: 10.1186/1471-2164-8-429 Google Scholar
  15. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795CrossRefPubMedGoogle Scholar
  16. Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grape. Tree Genet Genomes 6(3):413–422CrossRefGoogle Scholar
  17. Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot JM, This P, Grando MS (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol. doi: 10.1186/1471-2229-10-241 PubMedGoogle Scholar
  18. Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement: vol. 1 genomics approaches and platforms. Springer, The Netherlands, pp 97–119CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  21. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664CrossRefPubMedGoogle Scholar
  22. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139CrossRefPubMedGoogle Scholar
  23. Fournier-Level A, Hugueney P, Verriès C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol. doi: 10.1186/1471-2229-11-179 PubMedGoogle Scholar
  24. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  25. Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB (2008) Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC Plant Biol. doi: 10.1186/1471-2229-8-7 PubMedGoogle Scholar
  26. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germ plasm core collections by maximaizing allelic or phenotypic richness. J Hered 92:93–94CrossRefPubMedGoogle Scholar
  27. Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics. doi: 10.1186/1471-2164-8-187 Google Scholar
  28. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485CrossRefPubMedGoogle Scholar
  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  30. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61CrossRefPubMedGoogle Scholar
  31. Houel C, Bounon R, Chaïb J, Guichard C, Péros JP, Bacilieri R, Dereeper A, Canaguier A, Lacombe T, N’Diaye A, Le Paslier MC, Vernerey MS, Coriton O, Brunel D, This P, Torregrosa L, Adam-Blondon AF (2010) Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biol 10:284–299CrossRefPubMedGoogle Scholar
  32. Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol 12:30–59CrossRefPubMedGoogle Scholar
  33. Hudson RR (1987) Estimating the recombination parameter of a finite population-model without selection. Genet Res 50:245–250CrossRefPubMedGoogle Scholar
  34. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA-sequences. Genetics 111:147–164PubMedGoogle Scholar
  35. Ibáñez J, Vargas AM, Palancar M, Borrego J, de Andres MT (2009) Genetic relationships among table-grape varieties. Am J Enol Vitic 60:35–42Google Scholar
  36. Imazio S, Labra M, Grassi F, Scienza A, Failla O (2006) Chloroplast microsatellites to investigate the origin of grapevine. Genet Resour Crop Ev 53:1003–1011CrossRefGoogle Scholar
  37. Karaagac E, Vargas AM, de Andrés MT, Carreño I, Ibánez I, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes. doi: 10.1007/s11295-012-0480-0 Google Scholar
  38. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Ex Bot. doi: 10.1093/jxb/ers105 Google Scholar
  39. Le Cunff L, Fournier-Level A, Laucou V, Vezzuli S, Lacombe T, Adam-Blondon A, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp sativa. BMC Plant Biol. doi: 10.1186/1471-2229-8-31 PubMedGoogle Scholar
  40. Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andrés MT, Bravo G, Ibáñez A, Carreño J, Cabello F, Ibáñez J, Martínez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276:427–435CrossRefPubMedGoogle Scholar
  41. Lijavetzky D, Cabezas JA, Ibáñez A, Rodriguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics. doi: 10.1186/1471-2164-8-424 PubMedGoogle Scholar
  42. Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Vitic 58(4):499–507Google Scholar
  43. Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono MA, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. doi: 10.1186/1471-2229-11-57 PubMedGoogle Scholar
  44. Mullins MG, Bouquet A, Williams LE (1992) Biology of grapevine. Cambridge University Press, CambridgeGoogle Scholar
  45. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedGoogle Scholar
  46. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330CrossRefPubMedGoogle Scholar
  47. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  48. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80PubMedGoogle Scholar
  49. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefPubMedGoogle Scholar
  50. Pritchard JK, Stephens M, Donnely P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  51. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefPubMedGoogle Scholar
  52. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. P Natl Acad Sci USA 98:11479–11484CrossRefGoogle Scholar
  53. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefPubMedGoogle Scholar
  54. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  55. Ruperti B, Bonghi C, Ziliotto F, Pagni S, Rasori A, Varotto S, Tunutti P, Giovannoni JJ, Ramina A (2002) Characterization of a major latex protein (mlp) gene down-regulated by ethylene during peach fruitlet abscission. Plant Sci 163:265–272CrossRefGoogle Scholar
  56. Salmaso M, Faes G, Segala C, Stefanini M, Salakhutdinov L, Zyprian E, Toepfer R, Grando MS, Velasco R (2004) Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol Breeding 14:385–395CrossRefGoogle Scholar
  57. Sato A, Yamada M, Iwanami H, Mitani N (2004) Quantitative and instrumental measurements of grape flesh texture as affected by gibberellic acid application. J Jpn Soc Hortic Sci 73:7–11CrossRefGoogle Scholar
  58. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373Google Scholar
  59. Singh K, Weaver RJ, Johnson JO (1978) Effect of applications of gibberellic-acid on berry size, shatter, and texture of Thompson seedless grapes. Am J Enol Vitic 29:258–262Google Scholar
  60. Sorkheh K, Malysheva-Otto LV, Wirthensohn MG, Tarkesh-Esfahani S, Martínez-Gómez P (2008) Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genet Mol Biol 31:805–814CrossRefGoogle Scholar
  61. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedGoogle Scholar
  62. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225CrossRefPubMedGoogle Scholar
  63. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730CrossRefPubMedGoogle Scholar
  64. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289CrossRefPubMedGoogle Scholar
  65. Vargas AM, de Andrés MT, Borrego J, Ibáñez J (2009) Pedigrees of fifty table-grape cultivars. Am J Enol Vitic 60(4):525–532Google Scholar
  66. Watterson GA (1975) Number of segregating sites in genetic models without recombination. Theor Popul Biol 7:256–276CrossRefPubMedGoogle Scholar
  67. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19CrossRefPubMedGoogle Scholar
  68. Wen J, Nie Z-L, Soejima A, Meng Y (2007) Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Can J Bot 85:731–745CrossRefGoogle Scholar
  69. Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California Press, BerkeleyGoogle Scholar
  70. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alba M. Vargas
    • 1
    Email author
  • Loïc Le Cunff
    • 2
    • 3
  • Patrice This
    • 2
  • Javier Ibáñez
    • 1
    • 4
  • M. Teresa de Andrés
    • 1
  1. 1.Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca El EncínAlcalá de HenaresSpain
  2. 2.INRA UMR 1097 Diversité et Adaptation des Plantes CultivéesMontpellierFrance
  3. 3.UMT Geno-Vigne® (IFV, Supagro, INRA)MontpellierFrance
  4. 4.CSIC-Universidad de La Rioja-Gobierno de La RiojaLogroñoSpain

Personalised recommendations