Advertisement

Euphytica

, Volume 192, Issue 3, pp 359–369 | Cite as

Genetic mapping of gummy stem blight (Didymella bryoniae) resistance genes in Cucumis sativus-hystrix introgression lines

  • Lina Lou
  • Hongying Wang
  • Chuntao Qian
  • Jia Liu
  • Yuling Bai
  • Jinfeng ChenEmail author
Article

Abstract

Gummy stem blight (GSB, Didymella bryoniae (Auersw.) Rehm) is a devastating disease occurring worldwide in cucumber (Cucumis sativus L.) production and causing considerable yield loss. No commercially available cultivars are resistant to GSB. By screening 52 introgression lines (ILs) derived from the cross of C. hystrix × C. sativus and eight cucumber cultivar/lines through a whole plant assay, three ILs (HH1-8-1-2, HH1-8-5, HH1-8-1-16) were identified as GSB resistant lines. Six common introgression regions in these three ILs were on Chromosomes 1, 4, and 6. To further map the resistance in the ILs, three mapping populations (2009F2, 2009F2′ and 2010F2) from a cross between resistant IL HH1-8-1-2 and susceptible 8419 were constructed and used for QTL mapping with SSR markers. Two quantitative trait loci (QTLs) were identified; one on Chromosome 4 and the other on Chromosome 6. The interval for Chromosome 4 QTL is 12 cM spanning 3.569 Mbp, and the interval for Chromosome 6 QTL is 11 cM covering 1.299 Mbp. The mapped QTLs provide a foundation for map-based cloning of the genes and establishing an understanding of the associated mechanisms underlying GSB resistance in cucumber.

Keywords

Cucumis hystrix C. sativus Gummy stem blight Mapping Resistance gene 

Notes

Acknowledgments

This research was partially supported by the Key Program (30830079), the General Program (U1178307, 30972007 and 31071801) from the National Natural Science Foundation of China, the ‘973’ Program (2009CB119001-01;2012CB113900) from the National Basic Research Program of China, the ‘863’ project (2010AA10A108; 2012AA100202) and the ‘111’ project (B08026).

Supplementary material

10681_2013_860_MOESM1_ESM.pdf (27 kb)
Supplementary material 1 (PDF 28 kb)

References

  1. Amand PCS, Wehner TC (1991) Crop loss to 14 disease of cucumber in North Carolina from 1983 to 1988. Cucurbit Genet Coop Rpt 14:15–17Google Scholar
  2. Amand PCS, Wehner TC (1995) Greenhouse, detached-leaf, and field testing methods to determine cucumber resistance to gummy stem blight. J Am Soc Hortic Sci 120:673–680Google Scholar
  3. Amand PCS, Wehner TC (2001a) Generation means analysis of leaf and stem resistance to gummy stem blight in cucumber. J Am Soc Hortic Sci 126:95–99Google Scholar
  4. Amand PCS, Wehner TC (2001b) Heritability and genetic variance estimates for leaf and stem resistance to gummy stem blight in two cucumber populations. J Am Soc Hortic Sci 126:90–94Google Scholar
  5. Anamthawat-Jónsson K (2001) Molecular cytogenetics of introgressive hybridization in plants. Methods Cell Sci 23:141–150. doi: 10.1023/A:1013182724179 CrossRefGoogle Scholar
  6. Bala G, Hosein F (1986) Studies on gummy stem blight disease of cucurbits in Trinidad. Trop Agric 63:195–197Google Scholar
  7. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569. doi: 10.1186/1471-2164-11-569 PubMedCrossRefGoogle Scholar
  8. Chen J, Kirkbride JH (2000) A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia 52:315–319. doi: 10.2307/2666583 CrossRefGoogle Scholar
  9. Chen J, Staub JE, Tashiro Y, Isshiki S, Miyazaki S (1997) Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96:413–419. doi: 10.1023/A:1003017702385 CrossRefGoogle Scholar
  10. Chen J, Staub J, Qian Ch, Jiang J, Luo X, Zhuang F (2003) Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L. Theor Appl Genet 106:688–695. doi: 10.1007/s00122-002-1118-7 PubMedGoogle Scholar
  11. Chen J, Moriarty G, Jahn M (2004) Some disease resistance tests in Cucumis hystrix and its progenies from interspecific hybridization with cucumber. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research. Proceeding of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on cucurbit genetics and breeding. Czech Republic, Olomouc, p 189–196Google Scholar
  12. Dijkhuizen A, Kennard WC, Havey MJ, Staub JE (1996) RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90:79–87Google Scholar
  13. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245. doi: 10.1371/journal.pbio.0020245 PubMedCrossRefGoogle Scholar
  14. Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Res Crop Evol 46:337–350CrossRefGoogle Scholar
  15. Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281. doi: 10.1038/ng.475 PubMedCrossRefGoogle Scholar
  16. Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, Cregan P (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290. doi: 10.1007/BF00223461 CrossRefGoogle Scholar
  17. Keinath AP (2011) From native plants in central Europe to cultivated crops worldwide: the emergence os Didymella bryoniae as a cucurbit pathogen. HortScience 46:532–535Google Scholar
  18. Knerr LD, Staub JE, Holder DJ, May BP (1989) Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theor Appl Genet 78:119–128. doi: 10.1007/BF00299764 CrossRefGoogle Scholar
  19. Li Y, Yang L, Pathak M, Li D, He X, Weng Y (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983. doi: 10.1007/s00122-011-1640-6 PubMedCrossRefGoogle Scholar
  20. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc., SunderlandGoogle Scholar
  21. McGrath DJ, Vawdrey L, Walker IO (1993) Resistance to gummy stem blight in muskmelon. HortScience 28:930–931Google Scholar
  22. Meer QP, Bennekom JL, Giessen AC (1978) Gummy stem blight resistance of cucumbers (Cucumis sativus L.). Euphytica 27:861–864. doi: 10.1007/BF00023726 CrossRefGoogle Scholar
  23. Muir CD, Moyle LC (2009) Antagonistic epistasis for ecophysiological trait differences between Solanum species. New Phytol 183:789–802. doi: 10.1111/j.1469-8137.2009.02949.x PubMedCrossRefGoogle Scholar
  24. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4326. doi: 10.1093/nar/8.19.4321 PubMedCrossRefGoogle Scholar
  25. Qian CT, Chen JF, Zhuang FY, Xu YB, Li SJ (2002) Several photosynthetic characters of the synthetic species Cucumis hytivus Chen and Kirkbride under weak light condition. Plant Physiol Commun 38:336–338Google Scholar
  26. Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795. doi: 10.1371/journal.pone.0005795 PubMedCrossRefGoogle Scholar
  27. Shi JL, Lou QF, Qian CT, Wan HJ, Zhou XH, Chen JF (2011) Construction and genetic evaluation of chromosome segment introgression lines in cucumber. J Nanjing Agric Univ 34:20–24Google Scholar
  28. Sitterly WR, Keinath AP (1996) Gummy stem blight. In: Zitter TA, Hopkins DL, Thomas CE (eds) Compendium of Cucurbit Diseases. APS Press, St. Paul, MN., pp 27–28Google Scholar
  29. Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210PubMedCrossRefGoogle Scholar
  30. Van Ooijen JW (2006) JoinMap® 4.0. Software for the calculation of genetic linkage maps in experimental populations. Plant Research International, WageningenGoogle Scholar
  31. Van Steekelenburg NAM (1982) Factors influencing external fruit rot of cucumber caused by Didymella bryoniae. Eur J Plant Pathol 88:47–56. doi: 10.1007/BF01977338 Google Scholar
  32. Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RG, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103PubMedCrossRefGoogle Scholar
  33. Wehner TC, Amand PCS (1993) Field tests for cucumber resistance to gummy stem blight in North Carolina. HortScience 28:327–329Google Scholar
  34. Wehner TC, Shetty NV (2000) Screening the cucumber germplasm collection for resistance to gummy stem blight in North Carolina field tests. HortScience 35:1132–1140Google Scholar
  35. Wyszogrodzka AJ, Williams PH, Peterson CE (1986) Search for resistance to gummy stem blight (Didymella bryoniae) in cucumber (Cucumis sativus L.). Euphytica 35:603–613. doi: 10.1007/BF00021869 CrossRefGoogle Scholar
  36. Yang L, Koo D-H, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906. doi: 10.1111/j.1365-313X.2012.05017.x PubMedCrossRefGoogle Scholar
  37. Zhai HQ, Wang JK (2007) Applied quantitative genetics. China Agricultural Science and Technology Press, BeijingGoogle Scholar
  38. Zhuang FY, Chen JF, Qian ChT, Li ShJ, Ren G, Wang ZhJ (2002) Responses of seedings of Cucumis × hytivus and progenies to low temperature. J Nanjing Agric Univ 25:27–30Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lina Lou
    • 1
  • Hongying Wang
    • 1
  • Chuntao Qian
    • 1
  • Jia Liu
    • 1
  • Yuling Bai
    • 2
  • Jinfeng Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjingChina
  2. 2.Wageningen UR Plant BreedingWageningen UniversityWageningenThe Netherlands

Personalised recommendations