, Volume 186, Issue 3, pp 907–917 | Cite as

Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant

  • Osvin Arriagada
  • Freddy Mora
  • Joaquín C. Dellarossa
  • Marcia F. S. Ferreira
  • Gerardo D. L. Cervigni
  • Ivan Schuster


The soybean cyst nematode (SCN) is one of the most economically important pathogens of soybean. Molecular mapping of quantitative trait loci (QTL) for resistance to SCN is a proven useful strategy in order to assist in the development of resistant soybean cultivars. In the present study, a Bayesian modeling approach was performed to map QTL controlling genetic resistance to SCN races 3 and 14. For this purpose, a population of recombinant inbred lines derived from the cross between line Y23 (susceptible) and cv. Hartwig (resistant) was used. A total of 144 microsatellites markers (Simple Sequence Repeats) were selected and synthesized for mapping purpose. Posterior marginal parameter distributions were computed using the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm. It was determined the existence of four QTLs on three linkage groups (LG); that is LG A2 for race 3, LG C2 for race 14, and LG G for both races. The estimates of posterior modes of the heritability were 0.038 and 0.53 for the LGs A2 and G respectively (race 3). For the race 14 the posterior modes of the heritability were 0.044 and 0.05 for the LGs C2 and G. The identified QTLs explained about 57 and 9 % of the total phenotypic variance, for the races 3 and 14, respectively. These results confirm the effectiveness of the Bayesian method to map QTL controlling resistance to SCN in soybean. Accordingly, integrating QTL mapping with Bayesian methods will enable response to selection for quantitative traits of interest in soybean to be improved.


Linkage group Marker-assisted selection MCMC algorithm RIL 


  1. Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler M, Shemy HA, Mungur R, Willmitzer L, Lightfoot DA (2009) The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiol 151:1264–1280PubMedCrossRefGoogle Scholar
  2. Ball RA, McNew RW, Vories ED, Keisling TC, Purcell LC (2001) Path analyses of population density effects on short-season soybean yield. Agron J 93:187–195CrossRefGoogle Scholar
  3. Baudouin L, Piry S, Cornuet JM (2004) Analytical Bayesian approach for assigning individuals to populations. J Hered 95:217–224PubMedCrossRefGoogle Scholar
  4. Blasco A (2001) The Bayesian controversy in animal breeding. J Anim Sci 79:2023–2046PubMedGoogle Scholar
  5. Brucker E, Carlson S, Wright E, Niblack T, Diers B (2005) Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor Appl Genetics 111:44–49CrossRefGoogle Scholar
  6. Carvalho G, Nepstad D, McGrath D, Vera-Diaz MDC, Santilli M, Barros AC (2002) Frontier expansion in the amazon: balancing development and sustainability. Environment 44:34–45CrossRefGoogle Scholar
  7. Cervigini GDL, Schuster I, Silva MF, Sediyama CS, de Barros EG, Moreira MA (2007) A common QTL for resistance to races 3 and 9 of soybean cyst nematode. Revista de la Facultad de Agronomía 106:137–144Google Scholar
  8. Chang W, Dong L, Wang Z, Hu H, Han Y, Teng W, Zhang H, Guo M, Li W (2011) QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar ‘L-10’. BMC Genomics 12:233–243PubMedCrossRefGoogle Scholar
  9. Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131CrossRefGoogle Scholar
  10. Cornelious B, Chen P, Chen Y, de Leon N, Shannon JG, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16:103–112CrossRefGoogle Scholar
  11. Dong K, Baker KR, Opperman CH (1997) Genetics of soybean-Heterodera glycines interactions. J Nematol 29:509–522PubMedGoogle Scholar
  12. Embrapa (2007) Tecnologia de produção de soja: região central do Brasil, Londrina: Embrapa Soja, Embrapa Cerrados, Embrapa Agropecuária Oeste, 2006. 225 pGoogle Scholar
  13. Faghihi J, Vierling RA, Halbrendt JM, Ferris VR, Ferris JM (1995) Resistance genes in a ‘Williams 82 × ‘Hartwig’ soybean cross to an inbred line of Heterodera glycines. J Nematol 27:418–421PubMedGoogle Scholar
  14. Faria CU, Magnabosco CU, Reyes A, Lôbo RB, Bezerra LAF, Sainz RD (2007) Bayesian inference in a quantitative genetic study of growth traits in Nelore cattle (Bos indicus). Genetics Mol Biol 30:545–551CrossRefGoogle Scholar
  15. Ferreira MF, Cervigni GDL, Ferreira A, Schuster I, Santana FA, Pereira WD, Barros EG, Moreira MA (2011) QTLs for resistance to soybean cyst nematode, races 3, 9, and 14 in cultivar Hartwig. Pesquisa Agropecuária Brasileira 46:420–428CrossRefGoogle Scholar
  16. Figueiredo MG, Barros ALM, Guilhoto JJM (2005) Relação econômica dos setores agrícolas do Estado do Mato Grosso com os demais setores pertencentes tanto ao Estado quanto ao restante do Brasil. Revista de Economia e Sociologia Rural 43:557–575CrossRefGoogle Scholar
  17. Glover KD, Wang D, Arelli PR, Carlson SR, Cianzio SR, Diers BW (2004) Near isogenic lines confirm a soybean cyst nematode resistance gene from PI 88788 on linkage group. J Crop Sci 44:936–941CrossRefGoogle Scholar
  18. Guo Z (2007) Novel methods for increasing efficiency of quantitative trait locus mapping. Doctoral thesis, College of Agriculture, Kansas State University, Manhattan, Kansas, 55 ppGoogle Scholar
  19. Guo B, Sleper DA, Arelli PR, Shannon JG, Nguyen HT (2005) Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genetics 111:965–971CrossRefGoogle Scholar
  20. Guo B, Sleper DA, Nguyen HT, Arelli PR, Shannon JG (2006) Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci 46:224–233CrossRefGoogle Scholar
  21. Handoo ZA, Anand SC (1993) Biological manifestation of resistance to soybean cyst nematode development in Hartwig soybean. Crop Prot 12:371–372CrossRefGoogle Scholar
  22. Hayashi T, Awata T (2008) A Bayesian method for simultaneously detecting mendelian and imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 178:527–538PubMedCrossRefGoogle Scholar
  23. Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31:1109–1144CrossRefGoogle Scholar
  24. Henning JA, Townsend MS, Gent DH, Bassil N, Matthews P, Buck E, Beatson R (2011) QTL mapping of powdery mildew susceptibility in hop (Humulus lupulus L.). Euphytica 180:411–420CrossRefGoogle Scholar
  25. Jackson EW, Feng C, Fenn P, Chen P (2009) Genetic mapping of resistance to purple seed stain in PI 80837 soybean. J Hered 100:777–783PubMedCrossRefGoogle Scholar
  26. Kao CH, Zeng ZB, Teasdale R (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedGoogle Scholar
  27. Kazi S, Shultz J, Afzal J, Hashmi R, Jasim M, Bond J, Arelli PR, Lightfoot DA (2010) Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar ‘Hartwig’ to three soybean cyst nematode populations. Theor Appl Genetics 120:633–644CrossRefGoogle Scholar
  28. Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genetics Newslett 15:150–152Google Scholar
  29. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:173–175Google Scholar
  30. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  31. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedCrossRefGoogle Scholar
  32. Li H, Hearne S, Bänziger M, Li Z, Wang J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105:257–267PubMedCrossRefGoogle Scholar
  33. Lincoln SE, Lander SL (1993) Mapmaker/exp 3.0 and mapmaker/qtl 1.1. Technical report. Whitehead Institute of Medical Research, Cambridge, MAGoogle Scholar
  34. Liu MD, White TE, Litster DJ (2007) Dissolution behaviour of soy proteins and effect of initial concentration. J Agric Food Chem 55:2467–2473CrossRefGoogle Scholar
  35. Liu X, Liu S, Bendahmane AJA, Lightfoot DA, Mitchum MG, Meksem K (2011a) Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Funct Integr Genomics 11:539–549PubMedCrossRefGoogle Scholar
  36. Liu Y, Zhou X, Zhang J, Li H, Zhuang T, Yang R, Chen H (2011b) Bayesian analysis of interacting quantitative trait loci (QTL) for yield traits in tomato. Afr J Biotechnol 10:13719–13723CrossRefGoogle Scholar
  37. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genetics 10:565–577CrossRefGoogle Scholar
  38. Maliepaard C, Sillanpää MJ, Van Ooijen J, Jansen RC, Arjas E (2001) Bayesian versus frequentist analysis of multiple quantitative trait loci with an application to an outbred apple cross. Theor Appl Genetics 103:1243–1253CrossRefGoogle Scholar
  39. Mauro AO, Unêda-Trevisoli SH, Mauro SMZ, Costa MM, Oliveira RC, Arantes NE (2004) Efficiency of microsatellite markers in assisted selection for resistance to soybean cyst nematode (race 3). Crop Breed Appl Biotechnol 4:28–34Google Scholar
  40. Mayer M, Yuefu L, Freyer G (2004) A simulation study on the accuracy of position and effect estimates of linked QTL and their asymptotic standard deviations using multiple interval mapping in an F2 scheme. Genetics Sel Evol 36:455–479CrossRefGoogle Scholar
  41. Minuzzi A, Mora F, Sedrez-Rangel MA, De Lucca e Braccini A, Scapim CA (2007) Características fisiológicas, contenido de aceite y proteína en genotipos de soya, evaluadas en diferentes sitios y épocas de cosecha, Brasil. Agricultura Técnica 67:353–361Google Scholar
  42. Minuzzi A, Sedrez-Rangel MA, De Lucca e Braccini A, Scapim CA, Mora F, Dias Robaina A (2009) Yield, oil and protein content of four soybean cultivars produced in two locations of Mato Grosso do Sul State. Ciência e Agrotecnologia 33:1047–1054Google Scholar
  43. Mora F, Tapia F, Scapim CA, Martins EN, Pinto RJB, Ibacache A (2008) Early performance of Olea europaea cv. Arbequina, Picual and Frantoio in southern Atacama Desert. Crop Breed Appl Biotechnol 8:30–38Google Scholar
  44. Mora F, Scapim CA, Baharum A, Amaral AT (2010) Generalized composite interval mapping offers improved efficiency in the analysis of loci influencing non-normal continuous traits. Ciencia e Investigación Agraria 37:83–89CrossRefGoogle Scholar
  45. Noor MAF, Cunningham AL, Larkin JC (2001) Consequences of recombination rate variation on quantitative trait locus mapping studies: simulations based on the Drosophila melanogaster genome. Genetics 159:581–588PubMedGoogle Scholar
  46. Pfalz M, Vogel H, Mitchell-Olds T, Kroymann J (2007) Mapping of QTL for resistance against the crucifer specialist herbivore Pieris brassicae in a new arabidopsis inbred line population, Da(1)-12 × Ei-2. Plos One. doi: 10.1371/journal.pone.0000578
  47. Piepho HP (2000) Optimal marker density for interval mapping in a backcross population. Heredity 84:437–440PubMedCrossRefGoogle Scholar
  48. Qi Z, Wu Q, Han X, Sun Y, Du X, Liu C, Jiang H, Hu G, Chen Q (2011) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179:499–514CrossRefGoogle Scholar
  49. Riggs RD, Schmidt DP (1988) Complete characterization of the race scheme for Heterodera glycines. J Nematol 20:392–395PubMedGoogle Scholar
  50. Ruben E, Aziz J, Afzal J, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Arelli P, Town C, Meksem K, Lightfoot DA (2006) Genomic analysis of the ‘Peking’ rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Genetics Genomics 276:320–330Google Scholar
  51. Santos AI, Ribeiro RP, Vargas L, Mora F, Filho LA, Fornari DC, Oliveira SN (2011) Bayesian genetic parameters for body weight and survival of Nile tilapia farmed in Brazil. Pesquisa Agropecuária Brasileira 46:33–43CrossRefGoogle Scholar
  52. Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov Chain Monte Carlo. Genetics 144:805–816PubMedGoogle Scholar
  53. Schuster I, Cruz CD (2004) Estatística genômica aplicada a populações derivadas de cruzamentos controlados. Universidade Federal de Viçosa, ViçosaGoogle Scholar
  54. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics. A guide for the uninitiated. Trends Genetics 15:354–358CrossRefGoogle Scholar
  55. Silva JP, Leandro RA (2009) A bayesian approach to map QTLs using reversible jump MCMC. Ciência e Agrotecnologia 33:1061–1070CrossRefGoogle Scholar
  56. Silva JFV, Garcia A, Almeida AMR, Pereira JE (2002) Ecologia e controle do nematóide de cisto da soja. Resultados de Pesquisa da Embrapa Soja-2001: Doencas e Nematóides, Londrina, Embrapa Soja, pp. 8–9. Embrapa Soja, Documentos, 194Google Scholar
  57. Silva MF, Schuster I, Silva JFV, Ferreira A, Barros EG, Moreira MA (2007) Validation of microsatellite markers for assisted selection of soybean resistance to cyst nematode races 3 and 14. Pesquisa Agropecuária Brasileira 42:1143–1150CrossRefGoogle Scholar
  58. Stich B, Piepho HP, Schulz B, Melchinger AE (2008) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genetics 117:947–954CrossRefGoogle Scholar
  59. Studer AJ, Doebley JF (2011) Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188:673–681PubMedCrossRefGoogle Scholar
  60. Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624PubMedCrossRefGoogle Scholar
  61. Varona L, García-Cortes LA, Pérez-Enciso M (2001) Bayes factor for detection of quantitative trait loci. Genetics Sel Evol 33:133–152CrossRefGoogle Scholar
  62. Vierling RA, Faghihi J, Ferris VR, Ferris JM (1996) Association of RFLP markers conferring broad-based resistance to the soybean cyst nematode (Heterodera glycines). Theor Appl Genetics 92:83–86CrossRefGoogle Scholar
  63. Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (
  64. Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, Harada K (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 54:399–407CrossRefGoogle Scholar
  65. Webb DM (2003) (inventor), Pioneer Hi-Bred International Inc, assignee. Quantitative trait loci associated with cyst nematode resistance and uses thereof. US patent 6,538,175, 25 Mar 2003 (Issue date)Google Scholar
  66. Webb DM, Baltazar BM, Rao-Arelli PA, Schupp J, Clayton K, Keim P, Beavis WD (1995) Genetic mapping of soybean cyst nematode race-3 resistance loci in soybean PI 437654. Theor Appl Genetics 91:574–581CrossRefGoogle Scholar
  67. Wei W, Li Y, Wang L, Liu S, Yan X, Mei D, Li Y, Xu Y, Peng P, Hu Q (2010) Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theor Appl Genetics 120:1089–1097CrossRefGoogle Scholar
  68. Winter SMJ, Rajcan I, Shelp BJ (2006) Soybean cyst nematode: challenges and opportunities. Can J Plant Sci 86:25–32CrossRefGoogle Scholar
  69. Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT (2009) QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genetics 118:1093–1105CrossRefGoogle Scholar
  70. Yang J, Wu R, Casella G (2009) Nonparametric functional mapping of quantitative trait loci. Biometrics 65:30–39PubMedCrossRefGoogle Scholar
  71. Yi N, Shriner D (2008) Advances in Bayesian multiple QTL mapping in experimental designs. Heredity 100:240–252PubMedCrossRefGoogle Scholar
  72. Yi N, George V, Allison DB (2003) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164:1129–1138PubMedGoogle Scholar
  73. Yue P, Arelli PR, Sleper DA (2001) Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genetics 102:921–928CrossRefGoogle Scholar
  74. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Nat Acad Sci 90:10972–10976PubMedCrossRefGoogle Scholar
  75. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  76. Zou W, Zeng ZB (2008) Statistical methods for mapping multiple QTL. Int J Plant Genomics. doi: 10.1155/2008/286561

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Osvin Arriagada
    • 1
  • Freddy Mora
    • 2
  • Joaquín C. Dellarossa
    • 1
  • Marcia F. S. Ferreira
    • 3
  • Gerardo D. L. Cervigni
    • 4
  • Ivan Schuster
    • 5
  1. 1.Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Instituto de Biología Vegetal y BiotecnologíaUniversidad de TalcaTalcaChile
  3. 3.Universidade Federal do Espírito Santo, UFESVitóriaBrazil
  4. 4.Departamento de AgronomíaUniversidad Nacional del SurBahía BlancaArgentina
  5. 5.Cooperativa Central de Pesquisa Agrícola (COODETEC)ParanáBrazil

Personalised recommendations