, Volume 185, Issue 3, pp 491–510 | Cite as

Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits

  • M. F. Perera
  • M. E. Arias
  • D. Costilla
  • A. C. Luque
  • M. B. García
  • C. Díaz Romero
  • J. Racedo
  • S. Ostengo
  • M. P. Filippone
  • M. I. Cuenya
  • A. P. Castagnaro


Sugarcane is known for its highly complex genetics and more knowledge is needed for better use and conservation of genetic materials. In order to identify genotypes and to assess genetic diversity, diverse data sets such as morphological and molecular markers are used as a general approach. To evaluate the usefulness of different markers, important sugarcane genotypes in Argentina were characterized by AFLP, SSR and morphological traits. All genotypes characterized were grouped in one main cluster in dendrograms using two independent softwares. Interestingly, local genotypes grouped together with USA varieties and no clear genetic differentiation could be found probably due to intensive germplasm exchange between these breeding programs. The molecular markers tested were useful for genetic diversity assessment as well as for genotype identification. These markers should be included in the internationally established characters for sugarcane variety protection as they give a better view on whole genome complexity. Additionally, genetic similarities obtained from molecular markers will provide more accurate information to breeders than the pedigree method, especially when considering the asymmetric genetic inheritance of sugarcane. Morphological traits are valuable tools to identify genotypes since they reflect external resemblance more than genetic relatedness. When they were combined with molecular markers the dendogram obtained revealed genetic relationships and the genetic diversity was better estimated. In summary, both methods appear to be useful, complementing each other and should be used together to assist sugarcane breeders in estimating genetic diversity, electing parents for crossings, identifying superior lines and to protect intellectual property rights.


AFLP Breeding program Sugarcane germplasm bank Morphological descriptors Similarity coefficient SSR 



We thank A. D′Hont (CIRAD, France) for providing us with MSCIIR primer sequences, S. Olmos (INTA) for technical support, L. Montivero and Bjorn Welin for reviewing the manuscript English version and Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Tucumán (UNT) for their generous financial support. APC is CONICET member; MFP and JR are CONICET fellows.


  1. Ahmed MA, Cuenya MI, García MB, Díaz Romero C (2007) Dinámica y características del recambio de variedades de caña de azúcar en tucumán desde las primeras décadas del siglo xx hasta la actualidad. Avance Agroindustrial 28:17–22Google Scholar
  2. Aljanabi SM, Forget L, Dookun A (1999) An improved and rapid protocol for the isolation of polysaccharide and polyphenol-free sugarcane DNA. Plant Mol Biol Rep 17:1–8CrossRefGoogle Scholar
  3. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36(1):181–186PubMedCrossRefGoogle Scholar
  4. Angiolillo AM, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. TAG 98:411–421CrossRefGoogle Scholar
  5. Arro JA (2004) Genetic diversity among sugarcane clones using target region amplification polymorphism (TRAP) markers and pedigree relationships. Master of Science Thesis, Agronomy & Environmental ManagementGoogle Scholar
  6. Balzarini M, Di Rienzo J (2003) Info-gen: software para análisis estadístico de datos genéticos. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  7. Balzarini M, Arroyo A, Bruno C, Di Renzo J (2006) Análisis de datos de marcadores con Info-gen. XXXV Congreso Argentino de Genética, San LuisGoogle Scholar
  8. Barret BA, Kidwell KK (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci 38:1271–1278CrossRefGoogle Scholar
  9. Besse PG, Taylor B, Carroll N, Berding D, Burner CL (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104:143–153PubMedCrossRefGoogle Scholar
  10. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331PubMedGoogle Scholar
  11. Breaux RD, Legendre BL (1983) The USDA commercial breeding program in Louisiana. Proc Inter Am Sugar Cane Sem Var Breed III:99–105Google Scholar
  12. Bremer G (1961a) Problems in breeding and cytology of sugarcane. Euphytica 10:59–78CrossRefGoogle Scholar
  13. Bremer G (1961b) Cytological crossing research of sugar cane. Euphytica 10:229–243Google Scholar
  14. Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I (2004) Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. TAG 108(2):328–334. doi: 10.1007/s00122-003-1428-4 PubMedCrossRefGoogle Scholar
  15. Caetano-Anollés G, Gresshoff PM (1994) Staining nucleic acids with silver: an alternative to radioisotopic and fluorescent labeling. Promega Notes Mag 45:13Google Scholar
  16. Chang YS, Lo CC (1993) Genetic relationship among major sugar cane cultivars in Taiwan. Rep Taiwan Sugar Res Inst 140:1–10Google Scholar
  17. Coburn JR, Temnykh SV, Paul EM, McCouch SR (2002) Design and application of microsatellite marker panels for semiautomated genotyping of rice (Oryza sativa L.). Crop Sci 42:2092–2099CrossRefGoogle Scholar
  18. Cordeiro GM (2001) Molecular marker systems for sugarcane germplams analysis, Chap. 9. In: Henry RJ (ed) Plant genotyping, the DNA fingerprinting of plants. Cabi publishing, WallingfordGoogle Scholar
  19. Cordeiro GM, Taylor GO, Henry RJ (2000) Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci 155(2):161–168PubMedCrossRefGoogle Scholar
  20. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160(6):1115–1123PubMedCrossRefGoogle Scholar
  21. Cordeiro GM, Pan YB, Henry RJ (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 165:181–189CrossRefGoogle Scholar
  22. Cox TS, Kiang YT, Gorman MB, Rogers DM (1985) Relationships between coefficient of parentage and genetic similarity indices in the soybean. Crop Sci 25:529–532CrossRefGoogle Scholar
  23. Cuenya MI, Ostengo S, Chavanne ER, Espinosa MA, Costilla DD, Ahmed MA (2009) Relevamiento de la distribución de variedades comerciales y de la aplicación de otras tecnologías en el área de cultivo de la provincia de Tucumán: Campaña 2007–2008. Gacetilla Agroindustrial EEAOC 72Google Scholar
  24. Cuenya MI, Chavanne ER, Ostengo S, García MB, Ahmed M, Costilla DD, Díaz Romero C, Espinosa MA, Delgado N, Díaz JV (2011) TUC 95-10: una nueva variedad de caña de azúcar altamente productiva. Gacetilla Agroindustrial EEAOC 75Google Scholar
  25. Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol 28(2):294–298. doi: 10.1590/S1415-47572005000200020 CrossRefGoogle Scholar
  26. Degani C, Rowland LJ, Saunders JA, Hokanson SC, Ogden E, Golan-Goldrish A, Galetta GL (2001) A comparison of genetic relationship measures in strawberry (Fragaria ananassa duch.) based on AFLP, RAPDs and pedigree data. Euphytica 117:1–12CrossRefGoogle Scholar
  27. Demey JR, Zambrano AY, Fuenmayor F, Segovia V (2003) Relación entre caracterizaciones molecular y morfológica en una colección de yuca. Interciencia 28(12):684–689Google Scholar
  28. Deren CW (1995) Genetic base of U.S. mainland sugar cane. Crop Sci 35:1195–1199CrossRefGoogle Scholar
  29. D’Hont A, Rao PS, Feldman P, Grivet LN, Islam-Faridi N, Taylo P, Glaszmann JC (1995) Identification and characterization of sugarcane intergereric hybrids, Saccharum officinarum × Eriantus arudinaceus, with molecular markers and DNA in situ hybridisation. TAG 91:320–326Google Scholar
  30. D’Hont A, Seshagiri Rao P, Alleyne S, Glaszmann JC, Feldmann P (1997) Application of molecular markers in sugarcane breeding. Proceedings West Indies sugar technologists, pp 77–79Google Scholar
  31. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2010) InfoStat versión 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  32. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  33. Durán LA, Blair MW, Giraldo MC, Macchiavelli R, Prophete E, Nin JC, Beaver JS (2005) Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci 45:1320–1328CrossRefGoogle Scholar
  34. Gallacher DJ (1997) Optimised descriptors recommended for Australian sugarcane germplasm (Saccharum spp. Hybrid). Aust J Agric Res 48(6):775–779CrossRefGoogle Scholar
  35. García MG, Ontivero M, Díaz Ricci JC, Castagnaro AP (2002) Morphological traits and high resolution rapd markers for the identification of the main strawberry varieties cultivated in Argentina. Plant Breed 121:76–80CrossRefGoogle Scholar
  36. Gillet EM (1991) Genetic analysis of nuclear DNA restriction fragment patterns. Genome 34(5):693–703PubMedCrossRefGoogle Scholar
  37. Graner A, Ludwig WF, Melchinger AE (1994) Relationships among European barley germplasm. II. Comparisons of RFLP and pedigree data. Crop Sci 34:1199–1205CrossRefGoogle Scholar
  38. Heinz DJ (1987) Sugarcane improvement through breeding. Elsevier, Amsterdam 603 ppGoogle Scholar
  39. Hill MH, Witsenboer M, Zabeau P, Vos R, Kesseli R, Michelmore R (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. TAG 93:1202–1210CrossRefGoogle Scholar
  40. Junjian N, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42:601–607CrossRefGoogle Scholar
  41. Kempthorne O (1957) An introduction to genetic statistics. Wiley, New YorkGoogle Scholar
  42. Lima ML, Garcia AA, Oliveira KM, Matsuoka S, Arizono H, De Souza CL Jr, De Souza AP (2002) Analysis of genetic similarity detected by aflp and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). TAG 104(1):30–38PubMedCrossRefGoogle Scholar
  43. Link W, Dixkens C, Singh M (1995) Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD markers. TAG 90:27–32Google Scholar
  44. Lu YH, D′Hont A, Paulet F, Grivet L, Arnaud M, Glaszmann JC (1994) Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78:217–226CrossRefGoogle Scholar
  45. Machado JR, Walker DI, Bressiani JA, Goncalves A, da Silva J (1995) Emasculation of sugarcane tassels using hot water. Proc ISSCT 22:346–348Google Scholar
  46. Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690CrossRefGoogle Scholar
  47. Manigbas NL, Villegas LC (2004) Microsatellite markers in hybridity tests to identify true hybrids of sugarcane. Phil Crop Sci 29:23–32Google Scholar
  48. Martínez L, Cavagnaro P, Masuelli R, Rodriguez J (2005) Evaluation of diversity among Argentine grapevine (Vitis vinifera L.) varieties using morphological data and AFLP markers. Elect J Biotechnol 6:37–45Google Scholar
  49. Maughan PJ, Saghai MA, Maroof GR, Buss GR, Huestis GM (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. TAG 93:392–401CrossRefGoogle Scholar
  50. McIntyre CL, Jackson PA (2001) Low level of selfing found in a sample of crosses in Australian sugarcane breeding programs. Euphytica 117:245–249CrossRefGoogle Scholar
  51. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  52. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:384–394CrossRefGoogle Scholar
  53. Nagai C (1984) Emasculation of sugarcane tassels by hot water. Am Rept HSPA 3-4Google Scholar
  54. Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of India and Kenyan tea [Camellia sinensis (L) O. Kuntze] revealed by AFLP-markers. TAG 94:255–263CrossRefGoogle Scholar
  55. Plaschke J, Ganal MW, Roder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. TAG 91:1001–1007Google Scholar
  56. Powell W, Machray G, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222Google Scholar
  57. Queme JL, Molina L, Melgar M (2005) Analysis of genetic similarity among 48 sugarcane varieties using microsatellite DNA sequences. Proc ISSCT 25:592–595Google Scholar
  58. Rohlf FJ (1993) Ntsys-pc. Version 2.0. Applied biostatistics inc., Exeter Software, New YorkGoogle Scholar
  59. Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatallite markers. World J Agric Sci 4(5):538–544Google Scholar
  60. SAS Institute (2003) SAS/STAT release 9.1. SAS Inst., Cary, NCGoogle Scholar
  61. Schut JW, Qi X, Stam P (1997) Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet 95:1161–1168CrossRefGoogle Scholar
  62. Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46:394–403PubMedCrossRefGoogle Scholar
  63. Semagn K (2002) Genetic relationships among ten endod types as revealed by a combination of morphological, RAPD and AFLP markers. Hereditas 137:149–156PubMedCrossRefGoogle Scholar
  64. Smith S, Luk S, Sobral B, Muhawish S, Peleman J, Zabeau M (1994) Associations among inbred lines of maize using rflp and DNA amplification technologies (AFLP and AP-PCR), and correlations with pedigree, f1 yield and heterosis. Maize Genet Newslett 68:45Google Scholar
  65. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. Freeman, San francisco 573 ppGoogle Scholar
  66. Souza E, Sorrells ME (1989) Pedigree analysis of North American oat cultivars released from 1951 to 1985. Crop Sci 29:595–601CrossRefGoogle Scholar
  67. Tinker NA, Fortin MG, Mather DE (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976–984CrossRefGoogle Scholar
  68. Union for the Protection of New Varieties of Plants (UPOV) (2005) Directrices para la ejecución del examen de la distinción, la homogeneidad y la estabilidad tg/186/1. www.Upov.Int/es/publications/tg-rom/tg186/tg_186_1.Pdf
  69. Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The Libraries that made SUCEST. Genet Mol Biol 24:1–7CrossRefGoogle Scholar
  70. Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005) Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed 124:446–453CrossRefGoogle Scholar
  71. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414PubMedCrossRefGoogle Scholar
  72. Wagih ME, Musa Y, Ala A (2004) Fundamental botanical and agronomical characterization of sugarcane cultivars for clonal identification and monitoring genetic variations. Sugar Tech 6(3):127–140CrossRefGoogle Scholar
  73. Zhang MQ, Zheng XF, Yu AL, Xu JS, Zheng H (2004) Molecular marker application in sugarcane. Sugarcane Biotechnol 6(4):251–254Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. F. Perera
    • 1
  • M. E. Arias
    • 2
  • D. Costilla
    • 3
  • A. C. Luque
    • 2
  • M. B. García
    • 3
  • C. Díaz Romero
    • 3
  • J. Racedo
    • 1
  • S. Ostengo
    • 3
  • M. P. Filippone
    • 1
  • M. I. Cuenya
    • 3
  • A. P. Castagnaro
    • 1
  1. 1.Sección Biotecnología - Unidad Asociada al Instituto Superior de Investigaciones Biológicas; Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán (INSIBIO; CONICET-UNT)Estación Experimental Agroindustrial Obispo Colombres (EEAOC)Las TalitasArgentina
  2. 2.Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  3. 3.Subprograma Mejoramiento Genético de la Caña de AzúcarEstación Experimental Agroindustrial Obispo Colombres (EEAOC)Las TalitasArgentina

Personalised recommendations