, Volume 186, Issue 3, pp 779–792 | Cite as

QTL mapping for the cooking time of common beans

  • Robertha Augusta Vasconcelos Garcia
  • Priscila Nascimento Rangel
  • Priscila Zaczuk Bassinello
  • Claudio Brondani
  • Leonardo Cunha Melo
  • Sergio Tadeu Sibov
  • Rosana Pereira Vianello-Brondani


The decrease in the per capita consumption of beans has been partially attributed to their lengthy cooking time and the aggregated capital costs of their preparation. The aim of this study was to map microsatellite (SSR) markers linked to quantitative trait loci (QTLs) that govern the cooking time of common beans. An F2 generation consisting of 140 families was generated from a cross between lines CNFM7875 and Laranja. The cooking time of the F2:4 and F2:5 generations was then evaluated, and the latter generation was tested in two environments. The analysis of variance found a significant effect for the interactions between the families (P < 0.01) in both the F2:4 and F2:5 generations, as well as for the group analyses performed in the two environments. The experimental coefficient of variation varied from 9.42 to 17.94%. The Pearson’s correlation test indicated no significant association between water absorption and cooking time. The heritability coefficients had values of 0.532 and 0.739 for the F2:5 families evaluated at the two different locations, and the group analysis of the F2:5 generation indicated that there was a significant genotype × environment interaction. Of the 105 polymorphic SSRs evaluated, 91 mapped to 12 linkage groups with an estimated map size of 1,303.7 cM. Six significant QTLs were detected in both environments, and the percentage of the phenotypic variation that was explained by these loci ranged from 11.54 to 21.63%. As the genetic control was oligogenic, the identification of QTLs should serve as an optimal starting point for the implementation of a selection program.


Phaseolus vulgaris Grain quality Linkage map QTL SSR markers 



We would like to acknowledge CAPES for the doctoral fellowship of the student RAG, the CNPq for the grants of CB, LCM and RPVB, and PRODETAB/EMBRAPA for the financial support of the research.


  1. Baldoni AB, Santos JB (2005) Capacidade de cozimento de grãos de famílias de feijão do cruzamento ESAL 693 × Rosinha. Acta Sci Agro 27:233–236Google Scholar
  2. Benjamin Y, Hocheberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc 57:289–300Google Scholar
  3. Bertoldo JG, Coimbra JLM, Silveira CB, Toaldo D (2008) Efeito de diferentes concentrações salinas na redução do tempo de cocção de feijão (Phaseolus vulgaris L.). Biotemas 21:39–44Google Scholar
  4. Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374PubMedCrossRefGoogle Scholar
  5. Blair MW, Torres MM, Giraldo MC, Pedraza F (2009a) Development and diversity of Andean-derived. gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:100–114PubMedCrossRefGoogle Scholar
  6. Blair MW, Torres MM, Pedraza F, Giraldo MC, Buendia HF, Hurtado N (2009b) Development of microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched small-insert genomic libraries. Genome 52:772–782PubMedCrossRefGoogle Scholar
  7. Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070PubMedCrossRefGoogle Scholar
  8. Bressani R (1993) Grain quality of common beans. Food Rev Intern 9:237–297CrossRefGoogle Scholar
  9. Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781PubMedCrossRefGoogle Scholar
  10. Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254CrossRefGoogle Scholar
  11. Carbonell SAM, Carvalho CLR, Pereira VR (2003) Qualidade tecnológica de grãos de genótipos de feijoeiro cultivados em diferentes ambientes. Bragantia 62:369–379CrossRefGoogle Scholar
  12. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  13. Coelho CMM, Souza CA, Danelli ALD, Pereira T, Santos JCP, Piazzoli D (2008) Cooking capacity of dry bean grains according to genotype and temperature of hydration water. Cienc Agrotec 32:1080–1086CrossRefGoogle Scholar
  14. Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  15. Cruz CD (2006) Programa genes: Biometria. Editora UFV, ViçosaGoogle Scholar
  16. Galeano CH, Fernández AC, Gómez M, Blair MW (2009) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 10:29–643CrossRefGoogle Scholar
  17. Garcia RAV, Rangel PN, Brondani C, Martins WS, Melo LC, Carneiro MS, Borba TCO, Brondani RPV (2011) The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet 12:41. Available at:
  18. Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706PubMedGoogle Scholar
  19. Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melotto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Siqueira MVBM, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277PubMedCrossRefGoogle Scholar
  20. Hanai LR, Santin L, Camargo LEA, Fungaro MHP, Gepts P, Tsai SM, Vieira MLC (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP and putative functional markers. Mol Breed 25:25–45PubMedCrossRefGoogle Scholar
  21. Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J-S, Choi I-K, Hwang E-Y, Pastor-Corrales M, Cregan PB (2010) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11:475PubMedCrossRefGoogle Scholar
  22. Jacinto-Hernandez C, Azpiroz-Rivero S, Acosta-Gallegos JA, Hernandez-Sanchez H, Bernal-Lugo I (2003) Genetic analysis and random amplified polymorphic DNA markers associated with cooking time in common bean. Crop Sci 43:329–332CrossRefGoogle Scholar
  23. Khetarpaul N, Goyal R, Garg R (2005) Effect of salt solution pretreatment on the cooking quality and consumer acceptability of soy dhal. Br Food J 107:344–352CrossRefGoogle Scholar
  24. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedGoogle Scholar
  25. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628PubMedCrossRefGoogle Scholar
  26. Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191PubMedCrossRefGoogle Scholar
  27. Melo LC, Santos JB, Ferreira DF (2002) Mapeamento de QTLs para reação ao oídio e mancha-angular do feijoeiro-comum em diferentes locais. Pesq Agropec Bras 37:1115–1126CrossRefGoogle Scholar
  28. Mesquita FR, Corrêa AD, Abreu CMP, Lima RAZ, Abreu AFB (2007) Bean (Phaseolus vulgaris L.) lines: chemical composition and protein digestibility. Cienc Agrotec 31:1114–1121Google Scholar
  29. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131CrossRefGoogle Scholar
  30. Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative Trait Loci for seed protein and oil concentration and seed size in Soybean. Crop Sci 45:2015–2022CrossRefGoogle Scholar
  31. Paredes-Lopez O, Carabez-Tryo A, Palmer-Tirodo L, Ryes-Moreno C (1991) Influence of hardening procedure and soaking solution on cooking quality of common beans. Plant Foods Hum Nutr 41:155–164PubMedCrossRefGoogle Scholar
  32. Pedrosa-Harand A, Porch T, Gepts P (2008) Standard nomenclature for common bean chromosomes and linkage groups. Annu Rep Bean Improv Coop 51:106–107Google Scholar
  33. Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380PubMedCrossRefGoogle Scholar
  34. Proctor JP, Watts BM (1987) Effect of cultivar. growing location. moisture and phytate content on the cooking times of freshly harvested navy beans. Can J Plant Sci 67:923–937CrossRefGoogle Scholar
  35. Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394PubMedCrossRefGoogle Scholar
  36. Ramalho MAP, Abreu AFB (2006) Cultivares. In: Vieira C, Paula Júnior TJ, Borém A (eds) Feijão: aspectos gerais e cultura no Estado de Minas. Editora UFV, ViçosaGoogle Scholar
  37. Ribeiro ND, Londero PMG, Cargnelutti Filho A, Jost E, Poersch NL, Mallmann CA (2007) Composição de aminoácidos de cultivares de feijão e aplicações para o melhoramento genético. Pesq agropec bras 42:1393–1399CrossRefGoogle Scholar
  38. Rodrigues JA, Ribeiro ND, Filho AC, Trentin M, Londero PMG (2005) Qualidade para o cozimento de grãos de feijão obtidos em diferentes épocas de semeadura. Bragantia 64:369–376CrossRefGoogle Scholar
  39. Santos JB, Gavilanes ML (2006) Botânica. In: Vieira C, Paula Júnior TJ, Borém A (eds) Feijão: aspectos gerais e cultura no Estado de Minas. Editora UFV, ViçosaGoogle Scholar
  40. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song O, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  41. Silva DVF, Santos JB (2005) Controle genético da capacidade de cozimento do feijão (Phaseolus vulgaris L.) e identificação de marcadores RAPD e SSR. In: VIII Congresso Nacional de Pesquisa de Feijão. Goiás, pp 389–392Google Scholar
  42. Song XL, Wang K, Guo WZ, Zhang J, Zhang TZ (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. rG. barbadense L. Genome 48:378–390PubMedCrossRefGoogle Scholar
  43. Souza TLPO, Barros EG, Bellato CM, Hwang E-Y, Cregan PB, Pastor-Corrales MA (2011) Single nucleotide polymorphism discovery in common bean. Mol Breed. doi: 10.1007/s11032-011-9632-4
  44. Tanksley SD, Ganal MW, Prince JP, De Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Ro der MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  45. Vale NM, Barili LD, Rocha F, Prezzi HA, Almeida CB, Coimbra JLM, Guidolin AF (2010) Adição de sal na água de hidratação reduz o tempo de cozimento em feijão comum ao longo do tempo de armazenamento. Alim Nutr 21:617–623Google Scholar
  46. Vencovsky R, Barriga P (1992) Genética biométrica aplicada no fitomelhoramento. Editora SBG, Ribeirão Preto-SP-BrazilGoogle Scholar
  47. Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics: North Carolina State University. Raleigh. NC. Available at:
  48. Xian-Liang S, Xue-Zhen S, Tian-Zhen Z (2006) Segregation distortion and its effect on genetic mapping in plants. J Agric Biotech Environ 14:286–292Google Scholar
  49. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208PubMedCrossRefGoogle Scholar
  50. Xu S, Hu Z (2010) Mapping quantitative trait Loci using distorted markers. Int J Plant Genomics. doi: 10.1155/2009/410825
  51. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid and recombinant inbred populations in rice (Oryza sativa L.). Mol Genet Genomics 253:535–545CrossRefGoogle Scholar
  52. Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434PubMedCrossRefGoogle Scholar
  53. Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Robertha Augusta Vasconcelos Garcia
    • 1
  • Priscila Nascimento Rangel
    • 3
  • Priscila Zaczuk Bassinello
    • 2
  • Claudio Brondani
    • 2
  • Leonardo Cunha Melo
    • 2
  • Sergio Tadeu Sibov
    • 4
  • Rosana Pereira Vianello-Brondani
    • 2
  1. 1.School of Agronomy, Samambaia CampusFederal University of GoiasGoiâniaBrazil
  2. 2.Embrapa Rice and BeansSanto Antonio de GoiasBrazil
  3. 3.Monsanto of BrazilUberlandiaBrazil
  4. 4.Biological Institute of ScienceFederal University of GoiasGoiâniaBrazil

Personalised recommendations