, Volume 184, Issue 1, pp 73–83

Sequence variation in the barley genes encoding sucrose synthase I and sucrose phosphate synthase II, and its association with variation in grain traits and malting quality

  • Inge E. Matthies
  • Shailendra Sharma
  • Stephan Weise
  • Marion S. Röder


Sequence diversity in the two barley (Hordeum vulgare L.) genes encoding sucrose synthase I (SSI) and sucrose phosphate synthase II (SPSII), both of which are involved in sucrose accumulation and grain filling, was studied by partial resequencing of eight reference genotypes and SNP analysis by pyrosequencing in a panel of 94 spring and 96 winter European barley varieties. The resequencing was based on two adjacent SSI fragments of size 880 and 820 bp, and a 2,322 bp SPSII fragment. In the SSI gene, 26 SNPs were present in the larger fragment, and 25 in the smaller one, and 11 of these were exploited to develop high-throughput SNP assays used for haplotype analysis. An association analysis based on either a general or a mixed linear model suggested that the predominant three haplotypes influenced certain components of both kernel and malting quality. However, the level of phenotype/haplotype association shown with the SPSII gene was rather low. SNP variation of SSI was used to map the locus to chromosome 7H.


Hordeum vulgare L. Sucrose synthase I Sucrose phosphate synthase II Single nucleotide polymorphism Association genetics 

Supplementary material

10681_2011_563_MOESM1_ESM.pdf (146 kb)
Supplementary material 1 (PDF 146 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from western Canadian two-row barley cooperative trials. Crop Sci 50:1649–1663CrossRefGoogle Scholar
  3. Blake NK, Sherman JD, Dvorak J, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302PubMedCrossRefGoogle Scholar
  4. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  5. Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111PubMedCrossRefGoogle Scholar
  6. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567PubMedCrossRefGoogle Scholar
  7. Castleden CK, Aoki N, Gillespie VJ, Macrae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol 135:1753–1764PubMedCrossRefGoogle Scholar
  8. Cockram J, White J, Leigh F, Lea V, Chiapparino E, Laurie D, Mackay I, Powell W, O’Sullivan D (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16PubMedCrossRefGoogle Scholar
  9. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890PubMedCrossRefGoogle Scholar
  10. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  11. de Ilarduya O, Vicente-Carbajosa J, de la Hoz PS, Carbonero P (1993) Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ssl and Ss2. FEBS Lett 320:177–181CrossRefGoogle Scholar
  12. de la Hoz PS, Vicente-Carbajosa J, Mena M, Carbonero P (1992) Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn.1) and 2H–evidence for a gene translocation. FEBS 310:46–50CrossRefGoogle Scholar
  13. Echt CS, Chourey PS (1985) A comparison of two sucrose synthetase isozymes from normal and shrunken-1 maize. Plant Physiol 79:530–536PubMedCrossRefGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  15. Guerin J, Carbonero P (1997) The spatial distribution of sucrose synthase isozymes in barley. Plant Physiol 114:55–62PubMedGoogle Scholar
  16. Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522PubMedCrossRefGoogle Scholar
  17. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  18. Haseneyer G, Stracke S, Piepho HP, Sauer S, Geiger HH, Graner A (2010) DNA polymorphisms and haplotpype patterns of transcription factors involved in barley endosperm. BMC Plant Biol 10:5PubMedCrossRefGoogle Scholar
  19. Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444PubMedCrossRefGoogle Scholar
  20. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723PubMedCrossRefGoogle Scholar
  21. Kosambi D (1944) The calculation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  22. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedCrossRefGoogle Scholar
  23. Kraakman ATW, Martinez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58CrossRefGoogle Scholar
  24. Kuenne C, Lange M, Funke T, Miehe H, Thiel T, Grosse I, Scholz U (2005) CR-EST: a resource for crop ESTs. Nucleic Acids Res 33:D619–D621CrossRefGoogle Scholar
  25. Lapitan NLV, Hess A, Cooper B, Botha A-M, Badillo D, Iyer H, Menert J, Close T, Wright L, Hanning G, Tahir M, Lawrence C (2009) Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.). Theor Appl Genet 118:937–952PubMedCrossRefGoogle Scholar
  26. Lutfiyya LL, Xu NF, D’Ordine RL, Morrell JA, Miller PW, Duff SMG (2007) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J Plant Physiol 164:923–933PubMedCrossRefGoogle Scholar
  27. Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in worldwide cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6Google Scholar
  28. Marana C, Garcia-Olmedo F, Carbonero P (1990) Different expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172PubMedCrossRefGoogle Scholar
  29. Matthies IE, Weise S, Förster J, Röder MS (2009a) Association mapping and marker development of the candidate genes (1→3),(1→4)-β-d-Glucan-4-glucanohydrolase and (1→4)-β-Xylan-endohydrolase 1 for malting quality in barley. Euphytica 170:109–122CrossRefGoogle Scholar
  30. Matthies IE, Weise S, Röder MS (2009b) Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed 23:139–152CrossRefGoogle Scholar
  31. Matthies IE, Weise S, Röder MS (2010) Assoziationskartierung in Gerste–Ein genomweiter und Kandidatengen-Ansatz. Bericht über die 60. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, HBLFA Raumberg, Gumpenstein, 24. bis 26. 11. 2009, 91–96Google Scholar
  32. Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58CrossRefGoogle Scholar
  33. Nguyen-Quoc B, Krivitzky M, Huber SC, Lecharny A (1990) Sucrose synthase in developing maize leaves. Plant Physiol 94:516–523PubMedCrossRefGoogle Scholar
  34. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007CrossRefGoogle Scholar
  35. Potokina E, Sreenivasulu N, Altschmied L, Michalek W, Graner A (2002) Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct Integr Genomics 2:28–39PubMedCrossRefGoogle Scholar
  36. Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA arrays based on expression patterns in barley (Hordeum vulgare L.). Mol Breed 14:153–170CrossRefGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  38. Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185CrossRefGoogle Scholar
  39. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  40. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Nat Acad Sci USA 103:18656–18661PubMedCrossRefGoogle Scholar
  41. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Akrawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totawa, pp 365–386Google Scholar
  42. Sato K, Shin I, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y (2009) Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res 16:81–89PubMedCrossRefGoogle Scholar
  43. Schlueter SD, Dong QF, Brendel V (2003) GeneSeqer@PlantGDB: gene structure prediction in plant genomes. Nucleic Acids Res 31:3597–3600PubMedCrossRefGoogle Scholar
  44. Searle SR (1987) Linear models for unbalanced data. Wiley, New YorkGoogle Scholar
  45. Sharma S, Sreenivasulu N, Harshavardhan VT, Seiler C, Sharma S, Zaynali Nezhad K, Akhunov E, Sehgal SK, Röder MS (2010) Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC Plant Biol 10:134PubMedCrossRefGoogle Scholar
  46. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  47. Stracke S, Presterl T, Stein N, Perovic D, Ordon F, Graner A (2007) Effects of introgression and recombination on haplotype structure and linkage disequilibrium surrounding a locus containing Bymovirus resistance in barley. Genetics 175:805–817PubMedCrossRefGoogle Scholar
  48. Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273PubMedCrossRefGoogle Scholar
  49. Szücs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140CrossRefGoogle Scholar
  50. van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  51. Wang AY, Yu WP, Juang RH, Huang JW, Sung HY, Su JC (1992) Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA. Plant Mol Biol 18:1191–1194PubMedCrossRefGoogle Scholar
  52. Weise S, Scholz U, Röder MS, Matthies IE (2009) A comprehensive database of malting quality traits in brewing barley. Barley Genet Newslett 39:1–4Google Scholar
  53. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962PubMedCrossRefGoogle Scholar
  54. Worch S, Kalladan R, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1PubMedCrossRefGoogle Scholar
  55. Yanagisawa T, Kiribuchi-Otobe C, Yoshida H (2001) An alanine to threonine change in the Wx-D1 protein reduces GBSS I activity in waxy mutant wheat. Euphytica 121:209–214CrossRefGoogle Scholar
  56. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  57. Zhang HN, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Inge E. Matthies
    • 1
  • Shailendra Sharma
    • 1
    • 2
  • Stephan Weise
    • 1
  • Marion S. Röder
    • 1
  1. 1.Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Iwate Biotechnology InstituteKitakamiJapan

Personalised recommendations