, Volume 186, Issue 1, pp 139–151 | Cite as

Assessment of the spatial genotypic and phenotypic diversity present in the various winter wheat breeding programs in Southeast Europe

  • I. KarsaiEmail author
  • Gy. Vida
  • S. Petrovics
  • E. Petcu
  • B. Kobiljski
  • S. Ivanovska
  • Z. Bedő
  • O. Veisz


The genetic diversity present in the breeding programs of southeast Europe was assessed in a set of 114 winter wheat (Triticum aestivum L.) cultivars using AFLP and SSR markers. The average genetic diversity characterised with the Jaccard’s distance coefficient was 0.605 with an interval of 0.053 and 0.889. The wheat cultivars originating from the four countries differed from each other in their clustering patterns, including the numbers of clusters and the most prevalent cluster, which was breeding program-specific. Hungarian and Romanian cultivars showed closer relationships, and Serbian and Macedonian cultivars grouped together more frequently. The phenotypic variability of the same cultivars was assessed under diverse ecological conditions of the four growing sites, measuring the disease resistance against two foliar diseases, and several agronomic traits. Of the phenotypic traits, powdery mildew and leaf rust responses showed significant associations with genetic diversity, whereas heading date, plant height and yield components did not. Through parallel assessment of genotypic and phenotypic diversity it was possible to separate winter wheat cultivars with similar genotype but diverse phenotype from those with similar phenotype but diverse genotype. This information will allow breeders to make informed decisions in selecting parents for new crosses.


AFLP Leaf rust Powdery mildew SSR 



This research was financed by a SEE-ERAnet project (No: 10237/2007-2008).

Supplementary material

10681_2011_510_MOESM1_ESM.doc (182 kb)
Supplementary material 1 (DOC 182 kb)
10681_2011_510_MOESM2_ESM.doc (62 kb)
Supplementary material 2 (DOC 62 kb)


  1. Almanza-Pinzón MI, Khairallah M, Fox PN, Warburton ML (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86CrossRefGoogle Scholar
  2. Altıntas S, Toklu F, Kafkas S, Kilian B, Brandolini A, Özkan H (2008) Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breed 127:9–14Google Scholar
  3. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimising parental selection for genetic linkage maps. Genome 36:181–186PubMedCrossRefGoogle Scholar
  4. Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275PubMedCrossRefGoogle Scholar
  5. Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierscheider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84–91PubMedCrossRefGoogle Scholar
  6. Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030CrossRefGoogle Scholar
  7. Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9:1–11CrossRefGoogle Scholar
  8. Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917CrossRefGoogle Scholar
  9. Dreisigacker S, Zhang P, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388CrossRefGoogle Scholar
  10. Fu YB, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161–168CrossRefGoogle Scholar
  11. Fufa H, Baenziger PS, Beecher BS, Dweikat I, Graybosch RA, Eskridge KM (2005) Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145:133–146CrossRefGoogle Scholar
  12. Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Assessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173PubMedCrossRefGoogle Scholar
  13. Hao CY, Zhang XY, Wang LF, Dong YS, Shang XW, Jia JZ (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Mol Breed 17:69–77CrossRefGoogle Scholar
  14. Hazen SP, Leroy P, Ward RW (2002) AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution. Euphytica 125:89–102CrossRefGoogle Scholar
  15. Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Nati Acad Sci USA 96:5937–5943CrossRefGoogle Scholar
  16. Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707PubMedCrossRefGoogle Scholar
  17. Kim HS, Ward RW (2000) Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica 115:197–208CrossRefGoogle Scholar
  18. Krystkowiak K, Adamski T, Surma M, Kaczmarek Z (2009) Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica 165:419–434CrossRefGoogle Scholar
  19. Landjeva S, Korzun V, Ganeva G (2006) Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Genet Res Crop Evol 53:1605–1614CrossRefGoogle Scholar
  20. Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690CrossRefGoogle Scholar
  21. Maric S, Bolaric S, Martincic J, Pejic I, Kozumplik V (2004) Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed 123:366–369CrossRefGoogle Scholar
  22. Parker GD, Fox PN, Langridge P, Chalmers K, Whan B, Ganter PF (2002) Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica 124:293–306CrossRefGoogle Scholar
  23. Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864PubMedCrossRefGoogle Scholar
  24. Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal MW (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73PubMedGoogle Scholar
  25. Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930PubMedCrossRefGoogle Scholar
  26. Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170PubMedCrossRefGoogle Scholar
  27. Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK (2004) AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochem Genet 42:43–59PubMedCrossRefGoogle Scholar
  28. Smale M (1997) The green revolution and wheat genetic diversity: some unfounded assumptions. World Dev 25:1257–1269CrossRefGoogle Scholar
  29. Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet 104:350–357PubMedCrossRefGoogle Scholar
  30. Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248CrossRefGoogle Scholar
  31. Stubbs RW, Prescott JM, Saari EE, Dubin HJ (1986) Cereal disease methodology manual. Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), MexicoGoogle Scholar
  32. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  33. van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252PubMedCrossRefGoogle Scholar
  34. White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • I. Karsai
    • 1
    Email author
  • Gy. Vida
    • 1
  • S. Petrovics
    • 2
  • E. Petcu
    • 3
  • B. Kobiljski
    • 4
  • S. Ivanovska
    • 5
  • Z. Bedő
    • 1
  • O. Veisz
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Faculty of Agriculture UniversityJ.J. StrossmayerOsijekCroatia
  3. 3.National Agricultural Research and Development InstituteFunduleaRomania
  4. 4.Institute of Field and Vegetable CropsNovi SadSerbia
  5. 5.Faculty for Agricultural Sciences and FoodUniversity of SkopjeSkopjeMacedonia

Personalised recommendations