, Volume 179, Issue 2, pp 333–341

Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley

  • E. K. Khlestkina
  • E. A. Salina
  • I. E. Matthies
  • I. N. Leonova
  • A. Börner
  • M. S. Röder


The F3h gene encoding flavanone 3-hydroxylase, one of the key enzymes of the flavonoid biosynthesis pathway, is involved in plant defense response, however, it has not yet been genetically mapped in such important crop species as wheat, barley and rye. In the current study, the F3h genes were for the first time genetically mapped in these species, using microsatellite and RFLP markers. The three wheat F3h homoeologous copies F3h-A1, F3h-B1 and F3h-D1, and rye F3h-R1 were mapped close to the microsatellite loci Xgwm0877 and Xgwm1067 on chromosomes 2AL, 2BL, 2DL, and 2RL, respectively. Wheat F3h-G1 and barley F3h-H1 were also mapped at the homoeologous F3h-1 position on chromosomes 2GL and 2HL, respectively. The non-homoeologous F3h gene (F3h-B2) was mapped on wheat chromosome 2BL about 40 cM distal to the F3h-1 map position. The results obtained in the current study are important for further studies aimed on manipulation with F3h expression (and, hence, plant defense) in wheat, barley and rye.


Flavonoid biosynthesis Flavanone 3-hydroxylase Plant defense response Wheat Rye Barley Genetic mapping 


  1. Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Altschul SF, Madden TL, Schäfer AA, Zhang JZ, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Ardi R, Kobiler I, Jacoby B, Keen NT, Prusky D (1998) Involvement of epicatechin biosynthesis in the activation of the mechanism of resistance of avocado fruits to Colletotrichum gloeosporioides. Physiol Mol Plant Pathol 53:269–285CrossRefGoogle Scholar
  5. Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of mutant loci affecting plant height and development in cereals. Euphytica 100:245–248CrossRefGoogle Scholar
  6. Börner A, Korzun V, Malyshev S, Invadic V, Graner A (1999) Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor Appl Genet 99:670–675CrossRefGoogle Scholar
  7. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 105:921–936PubMedCrossRefGoogle Scholar
  8. Cheng H, Yang H, Zhang D, Gai J, Yu D (2010) Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance. Mol Breed 25:13–24CrossRefGoogle Scholar
  9. Cho S, Chen W, Muehlbauer FJ (2005) Constitutive experssion of the flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol Mol Plant Pathol 67:100–107CrossRefGoogle Scholar
  10. Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo G R, Hummel DD, Anderson OD, Qi LL, Gill BS, Echalier B, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Peng JH, Lapitan NLV, Nguyen HT, Ma X-F, Miftahudin, Gustafson JP, Greene RA, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sidhu D, Dilbirligi M, Gill KS, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Anderson JA (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene rich islands and colinearity with rice. Genetics 168:625–637Google Scholar
  11. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16:10881–10890PubMedCrossRefGoogle Scholar
  12. Deboo GB, Albertsen MC, Taylor LP (1995) Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J 7:703–713PubMedCrossRefGoogle Scholar
  13. Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron Abstr, 6Google Scholar
  14. Flintham JE, Gale MD (1995) Dormancy gene maps in homoeologous cereal genomes. In Proceedings of the 7th International Symposium on Pre-Harvest Sprouting in Cereals, Japan, 1995, pp 143–149Google Scholar
  15. Franckowiak JD (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21Google Scholar
  16. Freed RD, Everson EH, Ringlund K, Gullord M (1976) Seed coat color in wheat and the relationship to seed dormancy at maturity. Cereal Res Commun 4:147–149Google Scholar
  17. Giovanini MP, Puthoff DP, Nemacheck JA, Mittapalli O, Saltzmann KD, Ohm HW, Shukle RH, Williams CE (2006) Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol Plant-Microbe Interact 19:1023–1033PubMedCrossRefGoogle Scholar
  18. Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech 5:314–320CrossRefGoogle Scholar
  19. Halloin JM (1982) Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytol 90:651–657CrossRefGoogle Scholar
  20. Khlestkina EK, Pestsova EG, Röder MS, Börner A (2002) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L). Theor Appl Genet 104:632–637PubMedCrossRefGoogle Scholar
  21. Khlestkina EK, Myint Than MH, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L) including 39 expressed sequencing tags. Theor Appl Genet 109:725–732PubMedCrossRefGoogle Scholar
  22. Khlestkina EK, Pshenichnikova TA, Röder MS, Arbuzova VS, Salina EA, Börner A (2006) Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 113:801–807PubMedCrossRefGoogle Scholar
  23. Khlestkina EK, Röder MS, Salina EA (2008) Relationship between homoeologous regulatory and structural genes in allopolyploid genome–a case study in bread wheat. BMC Plant Biol 8:88. doi:101186/1471-2229-8-88 PubMedCrossRefGoogle Scholar
  24. Khlestkina EK, Tereschenko OY, Salina EA (2009a) Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol Genet Genom 282:475–485CrossRefGoogle Scholar
  25. Khlestkina EK, Salina EA, Pshenichnikova TA, Röder MS, Börner A (2009b) Glume coloration in wheat: allelism test, consensus mapping and its association with specific microsatellite allele. Cereal Res Commun 37:37–43CrossRefGoogle Scholar
  26. Khlestkina EK, Pshenichnikova TA, Röder MS, Börner A (2009c) Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res Commun 37:391–398CrossRefGoogle Scholar
  27. Khlestkina EK, Röder MS, Pshenichnikova TA, Börner A (2010a) Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L). Mol Breed 25:125–132CrossRefGoogle Scholar
  28. Khlestkina EK, Kumar U, Röder MS (2010b) Ent-kaurenoic acid oxidase genes in wheat. Mol Breed 25:251–258CrossRefGoogle Scholar
  29. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  30. Korzun V, Malyshev S, Voylokov A, Börner A (1997) RFLP based mapping of three mutant loci in rye (Secale cereale L) and their relation to homoeologous loci within the Gramineae. Theor Appl Genet 95:468–473CrossRefGoogle Scholar
  31. Kozlova SA, Khlestkina EK, Salina EA (2009) Specific features in using SNP markers developed for allopolyploid wheat. Rus J Genet 45:81–84. doi:101134/S1022795409010116 CrossRefGoogle Scholar
  32. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  33. Leonova IN, Röder MS, Budashkina EB, Kalinina NP, Salina EA (2002) Molecular analysis of leaf rust resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. Rus J Genet 38:1397–1403CrossRefGoogle Scholar
  34. Malysheva-Otto LV, Röder MS (2006) Haplotype diversity in the endosperm specific β-amylase gene Bmy1 of cultivated barley (Hordeum vulgare L). Mol Breed 18:143CrossRefGoogle Scholar
  35. Marbach I, Meyer AM (1974) Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol 54:817–820PubMedCrossRefGoogle Scholar
  36. Meldgaard M (1992) Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor Appl Genet 83:695–706CrossRefGoogle Scholar
  37. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Goiobori T, Sasaki T (2006) The rice annotation project database (RAB-DB): nub for Oryza sativa ssp Japonica genome information. Nucl Acids Res 34:741–744CrossRefGoogle Scholar
  38. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  39. Ryan KG, Swinny EE, Winefield C, Markham KR (2001) Flavonoids and UV photoprotection in Arabidopsis mutants. Z Naturforsch 56:745–754Google Scholar
  40. Rychlik W (2007) OLIGO 7 Primer Analysis Software. In: Yuryev A, (ed) Methods in molecular biology vol. 402: PCR primer design, Humana Press Inc, Totowa, NJ, pp 35–59Google Scholar
  41. Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689CrossRefGoogle Scholar
  42. Salina EA, Leonova IN, Efremova TT, Röder MS (2006) Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 6:71–80PubMedCrossRefGoogle Scholar
  43. Sears ER (1953) Nullisomic analysis in common wheat. Amer Nat 87:245–252CrossRefGoogle Scholar
  44. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  45. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  46. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Cur Op Plant Biol 5:218–223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E. K. Khlestkina
    • 1
    • 3
  • E. A. Salina
    • 1
  • I. E. Matthies
    • 2
  • I. N. Leonova
    • 1
  • A. Börner
    • 2
  • M. S. Röder
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Institute of Cytology and Genetics SB RASNovosibirskRussia

Personalised recommendations