Advertisement

Euphytica

, Volume 178, Issue 2, pp 185–193 | Cite as

Mating systems in tropical forages: Stylosanthes capitata Vog. and Stylosanthes guianensis (Aubl.) Sw.

  • Melissa de Oliveira Santos-Garcia
  • Rosângela Maria Simeão Resende
  • Lucimara Chiari
  • Maria Imaculada Zucchi
  • Anete Pereira de SouzaEmail author
Article

Abstract

Stylosanthes capitata and S. guianensis are important forage legumes for tropical areas. The only available estimates of S. capitata and S. guianensis outcrossing rates were based on morphological markers, and the genus is considered as being mainly self-pollinated. Here we describe an estimation of the outcrossing rate in S. capitata and S. guianensis using microsatellite markers. The outcrossing rates were estimated in S. capitata and S. guianensis open-pollinated populations of 20 progenies consisting of ten individuals each. The multi locus outcrossing rate for S. capitata was estimated using 10 polymorphic loci, whereas five microsatellites were used for S. guianensis. The multi locus outcrossing rates for S. capitata and S. guianensis were 31 and 26%, respectively, suggesting a mixed mating system with predominance of autogamy. Comparison of single locus and multi locus estimates of outcrossing rates indicated that little inbreeding other than selfing occurred. The estimated Wright’s fixation index of the parental generation was lower than expected based on the multi locus outcrossing rate, possibly resulting from the use of some heterozygous breeding genotypes for the study. The data on the outcrossing rate described here are potentially useful for breeding programs and for maintenance of germplasm collections of these Stylosanthes species.

Keywords

Microsatellite markers Autogamy Mixed mating system Plant breeding 

Notes

Acknowledgments

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support to this research (Grant # 2005/51010-0). M.O.S.G. received a scholarship from FAPESP (2005/52211-9) and A.P.S. is the recipient of a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Alcaraz M, Hormaza J (2007) Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas 144:244–253CrossRefPubMedGoogle Scholar
  2. Azevedo VC, Kanashiro M, Ciampi AY, Grattapaglia D (2007) Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev., a heavily logged Amazonian timber species. J Hered 98:646–654CrossRefPubMedGoogle Scholar
  3. Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531CrossRefPubMedGoogle Scholar
  4. Billote N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microsatellite enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  5. Bonato AL, Verzignass JR, Resende RM, Fernandes CD, Leguizamon GO (2002) Extração de DNA genômico de Stylosanthes spp. Embrapa Gado de Corte/Comunicado Técnico. http://www.cnpgc.embrapa.br/publicacoes/cot/pdf/COT78.pdf
  6. Bray R, Hutton E (1976) Plant breeding and genetics. Trop Pasture Res 51:353–388Google Scholar
  7. Cameron D, Hutton E, Miles J, Brolmann J (1984) Plant breeding in Stylosanthes. In: Stace H, Edye L (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 589–606Google Scholar
  8. Cameron D, Trevorrow R, Liu C (1997) Recent advances in studies of anthracnose of Stylosanthes. II. Approaches to breeding for anthracnose resistance in Stylosanthes in Australia. Trop Grasslands 31:424–429Google Scholar
  9. Chandra A, Pathak PS, Bhatt RK (2006) Stylosanthes research in India: prospects and challenges ahead. Curr Sci India 90:915–921Google Scholar
  10. Conte R, Sedrez dos Reis M, Mantovani A, Vencovsky R (2008) Genetic structure and mating system of Euterpe edulis Mart. populations: a comparative analysis using microsatellite and allozyme markers. J Hered 99:476–482CrossRefPubMedGoogle Scholar
  11. Costa N (2006) Revisão do género Stylosanthes, PhD thesis. Universidade Técnica de Lisboa, Lisboa 470 pGoogle Scholar
  12. Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  13. Edye L, Cameron D (1984) Prospects for Stylosanthes improvement and utilization. In: Stace H, Edye L (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 571–588Google Scholar
  14. Ferreira M, Costa N (1979) O genero Stylosanthes Sw. no Brasil. EPAMIG, Belo HorizonteGoogle Scholar
  15. Gillies AC, Abbott RJ (1996) Phylogenetic relationships in the genus Stylosanthes (Leguminosae) based upon chloroplast DNA variation. Plant Syst Evol 200:1615–6110CrossRefGoogle Scholar
  16. Goudet J (2001) FSTAT (Version 1.2): a computer program to calculate F-statistics. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 17 June 2010
  17. Grof B, Schultze-Kraft R, Miller F (1979) Stylosanthes capitata Vog., some agronomic attributes, and resistance to anthracnose Colletotrichum gloeosporioides Penz. Trop Grasslands 13:28–37Google Scholar
  18. Hamrick J, Godt M (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc B 351:1291–1298CrossRefGoogle Scholar
  19. Karasawa M, Vencovsky R, Silva C, Zucchi M, Oliveira G, Veasey E (2007) Mating system of Brazilian Oryza glumaepatula populations studied with microsatellite markers. Ann Bot 99:245–253CrossRefPubMedGoogle Scholar
  20. Kelemu S, Changshun J, Guixi H, Segura G (2005) Genetic transformation of the tropical forage legume Stylosanthes guianensis with rice-chitinase gene confers resistance to Rhizoctonia foliar blight disease. Afr J Biotechnol 4:1025–1033Google Scholar
  21. Lewis PO, Zaykin D (2000) Genetic data analysis: computer program for the analysis of allelic data. http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php.Accessed 23 Sept 2002
  22. Liu C, Musial J, Thomas B (1999) Genetic relationship among Stylosanthes species revealed by RFLP and STS analyses. Theor Appl Genet 99:1179–1186CrossRefGoogle Scholar
  23. Maass BL, Sawkins MC (2004) History, relationships and diversity among Stylosanthes species of commercial significance (chapter 1). In: Chakraborty S (ed) High-yielding anthracnose-resistant Stylosanthes for agricultural systems. ACIAR Monograph No. 111. Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia. pp 9–26Google Scholar
  24. Maass B, Torres A (1998) Off-types indicates natural outcrossing in five tropical forage legumes in Colombia. Trop Grasslands 32:124–130Google Scholar
  25. Mantovani A, Morellato P, Dos Reis M (2006) Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze. J Hered 97:466–472CrossRefPubMedGoogle Scholar
  26. Miles J (1983) Natural outcrossing in Stylosanthes capitata. Trop Grasslands 17:114–117Google Scholar
  27. Miles J (1985) Evaluation of potential genetic marker traits and estimation of outcrossing rate in Stylosanthes guianensis. Aust J Agric Res 36:259CrossRefGoogle Scholar
  28. Miller MP (1997) Tools for population genetic analysis (TFPGA): Windows program for the analysis of allozyme and molecular population genetic data. http://www.marksgeneticsoftware.net/tfpga.htm Accessed 3 July 2008
  29. O’Conell L, Russel J, Ritland K (2004) Fine-scale estimation of outcrossing in western redcedar with microsatellite assay of bulked DNA. Heredity 93:443–449CrossRefGoogle Scholar
  30. Ozkan H, Kafkas S, Ozer M, Brandolini A (2005) Genetic relationships among South-East Turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theor Appl Genet 112:12–20CrossRefPubMedGoogle Scholar
  31. Pathak P, Ramesh C, Bhatt R (2004) Stylosanthes in the reclamation and development of degraded soils in India. In: Chakraborty S (ed) High-yielding anthracnose-resistant Stylosanthes for agricultural systems. ACIAR, Canberra, pp 85–96Google Scholar
  32. Phaikaew C, Ramesh CR, Kexian Yi, Stur W (2004) Utilization of Stylosanthes as a forage crop in Asia. In: Chakraborty S (ed) High yielding anthracnose-resistant Stylosanthes for agricultural systems. ACIAR, Canberra, pp 65–76Google Scholar
  33. Ritland K (1989) Correlated matings in the partial selfer, Mimulus guttatus. Evolution 43:849–859CrossRefGoogle Scholar
  34. Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185CrossRefGoogle Scholar
  35. Ritland K (2002) Extensions of models for the estimation of mating system using n independent loci. Heredity 88:221–228CrossRefPubMedGoogle Scholar
  36. Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47:35–52CrossRefGoogle Scholar
  37. Santos MO, Karia CT, Resende RM, Chiari L, Jungmann L, Zucchi MI, Souza AP (2009) Isolation and characterization of microsatellite loci in the tropical forage ume Stylosanthes guianensis (Aubl.) Sw. Conserv Genet Resour 1:43–46CrossRefGoogle Scholar
  38. Stace H (1982) Breeding systems in Stylosanthes. Observations of outcrossing in S. scabra at an alcohol dehydrogenase locus. Aust J Agric Res 33:87–96CrossRefGoogle Scholar
  39. Stace H, Cameron D (1984) Cytogenetics and the evolution of Stylosanthes. In: Stace H, Edye L (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 49–72Google Scholar
  40. Thomas D, Lascano C, Vera R (1987) A tropical pasture legume for poor soils. Span 30:59–61Google Scholar
  41. Vander Stappen J, Weltjens I, Volckaert G (1999) Microsatellite markers in Stylosanthes guianensis. Mol Ecol 8:514–517PubMedGoogle Scholar
  42. Vander Stappen J, Weltjens I, Lopez S, Volckaert G (2000) Genetic diversity in Mexican Stylosanthes humilis as revealed by AFLP, compared to the variabiliy of S. humilis accessions of South American origin. Euphytica 113:145–154CrossRefGoogle Scholar
  43. Vogler D, Kalisz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55:202–204PubMedGoogle Scholar
  44. Williams RJ, Reid R, Schultze-Kraft R, Costa NM, Thomas BD (1984) Natural distribution of Stylosanthes. In: Stace H, Edye L (eds) The biology and agronomy of Stylosanthes. Academic Press, Sydney, pp 73–101Google Scholar
  45. Wright S (1978) Evolution and the genetics of populations, vol.4. Variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Melissa de Oliveira Santos-Garcia
    • 1
  • Rosângela Maria Simeão Resende
    • 2
  • Lucimara Chiari
    • 2
  • Maria Imaculada Zucchi
    • 3
  • Anete Pereira de Souza
    • 1
    • 4
    Email author
  1. 1.Centro de Biologia Molecular e Engenharia GenéticaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Empresa Brasileira de Pesquisa Agropecuária (Embrapa)Campo GrandeBrazil
  3. 3.Pólo Apta Centro SulPiracicabaBrazil
  4. 4.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations