, Volume 179, Issue 1, pp 119–127 | Cite as

Characterization of two new Puccinia graminis f. sp. tritici races within the Ug99 lineage in South Africa

  • Botma VisserEmail author
  • Liezel Herselman
  • Robert F. Park
  • Haydar Karaoglu
  • Cornelia M. Bender
  • Zacharias A. Pretorius


Two new races of the wheat (Triticum aestivum L.) stem rust pathogen, representing the fifth and sixth variants described within the Ug99 lineage, were detected in South Africa. Races TTKSP and PTKST (North American notation) were detected in 2007 and 2009, respectively. Except for Sr24 virulence, race TTKSP is phenotypically identical to TTKSF, a commonly detected race of Puccinia graminis f. sp. tritici (Pgt) in South Africa. PTKST is similar to TTKSP except that it produces a lower infection type on the Sr21 differential and has virulence for Sr31. Simple sequence repeat (SSR) analysis confirmed the genetic relationship amongst TTKSF, TTKSP, PTKST and TTKSK (Ug99). TTKSK, PTKST and TTKSF grouped together with 99% similarity, while sharing 88% genetic resemblance with TTKSP. These four races in turn shared only 31% similarity with other South African races. It is proposed that both TTKSP and PTKST represent exotic introductions of Pgt to South Africa.


Pathotype Stem rust Triticum aestivum Wheat TTKSK 



The Winter Cereal Trust is acknowledged for funding this project.


  1. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  2. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  3. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  4. Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  5. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270Google Scholar
  6. Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099CrossRefGoogle Scholar
  7. Jin Y, Szabo LJ, Pretorius ZA (2008a) Virulence variation within the Ug99 lineage. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th International Wheat Genetics Symposium, Brisbane, Australia. Sydney University Press eScholarship Repository paper O02. Accessed 19 April 2010
  8. Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008b) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926CrossRefGoogle Scholar
  9. Jin Y, Szabo LJ, Rouse MN, Fetch T, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370CrossRefGoogle Scholar
  10. Le Roux J, Rijkenberg FHJ (1987) Pathotypes of Puccinia graminis f. sp. tritici with increased virulence for Sr24. Plant Dis 71:1115–1119CrossRefGoogle Scholar
  11. MacKenzie D (2008) Killer wheat fungus threatens starvation of millions. New Sci 2647:14–15Google Scholar
  12. Mantel NA (1967) The detection of disease clustering and a generalised regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  13. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  14. Park RF, Bariana HS (2008) Status of Ug99 resistance in current Australian wheat cultivars and breeding materials. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings 11th International Wheat Genetics Symposium, Brisbane, Australia. Sydney University Press eScholarship Repository paper O07. Accessed 19 April 2010
  15. Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203CrossRefGoogle Scholar
  16. Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS (2007) Challenges for sustainable cereal rust control in South Africa. Aust J Agric Res 58:593–601CrossRefGoogle Scholar
  17. Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94:784CrossRefGoogle Scholar
  18. Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Software, Setauket, New YorkGoogle Scholar
  19. Rowell JB, Romig RW (1966) Detection of urediospores of wheat rusts in spring rains. Phytopathology 56:807–811Google Scholar
  20. Saari EE, Prescott JM (1985) World distribution in relation to economic loss. In: Roelfs AP, Bushnell WR (eds) The cereal rusts volume II: diseases distribution epidemiology and control. Academic Press, Orlando, pp 259–289Google Scholar
  21. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics. Proc Nat Acad Sci USA 81:8014–8018PubMedCrossRefGoogle Scholar
  22. Sambrook J, Fritsch EF, Maniates T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  23. Singh RP, McIntosh RA (1987) Genetics of resistance to Puccinia graminis tritici in “Chris” and “W3746” wheats. Theor Appl Genet 73:846–855CrossRefGoogle Scholar
  24. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1:1–13Google Scholar
  25. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309CrossRefGoogle Scholar
  26. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438Google Scholar
  27. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA-ARC E167Google Scholar
  28. Szabo LJ (2007) Development of simple sequence repeat markers for the plant pathogenic rust fungus, Puccinia graminis. Mol Ecol Notes 7:92–94CrossRefGoogle Scholar
  29. Terefe TG, Pretorius ZA, Paul I, Mebalo J, Meyer L, Naicker K (2010) Occurrence and pathogenicity of Puccinia graminis f. sp. tritici on wheat in South Africa during 2007 and 2008. S Afr J Plant Soil 27:163–167Google Scholar
  30. Visser B, Herselman L, Pretorius ZA (2009) Genetic comparison of Ug99 with selected South African races of P. graminis f. sp. tritici. Mol Plant Pathol 10:213–222PubMedCrossRefGoogle Scholar
  31. Wanyera R, Kinyua MG, Jin Y, Singh RP (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici with virulence on Sr31 in Eastern Africa. Plant Dis 90:113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Botma Visser
    • 1
    Email author
  • Liezel Herselman
    • 1
  • Robert F. Park
    • 2
  • Haydar Karaoglu
    • 2
  • Cornelia M. Bender
    • 1
  • Zacharias A. Pretorius
    • 1
  1. 1.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.Plant Breeding Institute CobbittyThe University of SydneyCamdenAustralia

Personalised recommendations