, Volume 177, Issue 2, pp 179–190 | Cite as

Molecular mapping of quantitative trait loci for domestication traits and β-glucan content in a wheat recombinant inbred line population

  • Alagu Manickavelu
  • Kanako Kawaura
  • Hisako Imamura
  • Michiko Mori
  • Yasunari OgiharaEmail author


Genetic maps are useful for analysis of quantitative trait loci (QTLs) and for marker-assisted selection (MAS) in breeding. A simple sequence repeat (SSR) marker linkage map of common wheat was constructed based on recombination inbred lines (RILs) derived from a cross between Chinese Spring and spelt wheat. The map included 264 loci on all wheat chromosomes covering 2,345.2 cM with 962, 794.6, and 588.6 cM for the A, B, and D genomes, respectively. Using the RILs and the map, we detected 42 putative QTLs on 15 chromosomes for ear length, spikelet number, spike compactness, kernel length, kernel width, kernel height and β-glucan content. Each QTL explained 4–45% of the phenotypic variation. Five QTL cluster regions were detected on chromosomes 1A, 5AL, 2B, 2D, and 4D. The first QTLs for β-glucan content in wheat were identified on chromosomes 3A, 1B, 5B, and 6D.


Triticum aestivum SSR Genetic linkage map QTL RIL 



This study was supported by Grants-in-Aid for Scientific Research in priority areas “Comparative Genomics” and the National Bio-resource Project from the Ministry of Education, Culture, Sports, Science and Technology of Government of Japan.

This is contribution no. 1004 from the Kihara Institute for Biological Research, Yokohama City University.

Supplementary material

10681_2010_217_MOESM1_ESM.doc (52 kb)
Supplementary material 1 (DOC 51 kb)


  1. Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer MM (2005) Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 111:325–336CrossRefPubMedGoogle Scholar
  2. Ahmed TA, Tsujimoto H, Sasakuma T (2000) Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica 116:111–119CrossRefGoogle Scholar
  3. Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA, Dhaliwal HS, Rao VS, Gupta VS, Ranjekar PK (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–773CrossRefGoogle Scholar
  4. Bennet MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176CrossRefGoogle Scholar
  5. Borner A, Worland AJ, Plaschke J, Schumann E, Law CN (1993) Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in Middle Europe. Plant Breed 111:204–216CrossRefGoogle Scholar
  6. Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat. Theor Appl Genet 105:921–936CrossRefPubMedGoogle Scholar
  7. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177CrossRefPubMedGoogle Scholar
  8. Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping population. Field Crops Res 101:172–179CrossRefGoogle Scholar
  9. Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Trticum monococcum chromosome 1A m. Theor Appl Genet 105:585–593CrossRefPubMedGoogle Scholar
  10. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase–like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-b-D-Glucans. Science 311:1940–1942CrossRefPubMedGoogle Scholar
  11. Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Sci 39:1184–1195CrossRefGoogle Scholar
  12. Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, Mccann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565CrossRefPubMedGoogle Scholar
  13. Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266CrossRefGoogle Scholar
  14. Coventry SJ, Barr AR, Eglinton JK, McDonald GK (2003) The determinants and genome locations influencing grain weight and size in barley (Hordeum vulgare L.). Aust J Agric Res 54:1103–1115CrossRefGoogle Scholar
  15. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin ED, Bacic A (2009) A barley cellulose synthase like CSLH gene mediates (1, 3;1, 4)-b-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA 106:5996–6001CrossRefPubMedGoogle Scholar
  16. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Genet 3:43–52CrossRefGoogle Scholar
  17. Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311321Google Scholar
  18. Fincher GB (2009) Exploring the evolution of (1, 3;1, 4)-B-D-glucan in plant cell walls: comparative genomics can help. Curr Opin Plant Biol 12:140–147CrossRefPubMedGoogle Scholar
  19. Fincher GB, Stone BA (1986) Cell walls and their components: Cereal grain technology, vol 8. American Association of Cereal Chemists, St. Paul, MN, pp 207–295Google Scholar
  20. Gale MD, Atkinson MD, Chinoy CN (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genet Symp. China Agricultural Scientech Press, Beijing, pp 29–40Google Scholar
  21. Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand kernel weight in bread wheat. Theor Appl Genet 106:1032–1040PubMedGoogle Scholar
  22. Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115CrossRefPubMedGoogle Scholar
  23. Hozova B, Kuniak L, Moravcikova P, Gajdosova A (2007) Determination of water-insoluable b-d-glucan in the whole grain cereals and pseudocereals. Czech J Food Sci 25:316–324Google Scholar
  24. Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273CrossRefPubMedGoogle Scholar
  25. Jofuku DK, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102:3117–3122CrossRefPubMedGoogle Scholar
  26. Johnson EB, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201CrossRefGoogle Scholar
  27. Kato K, Wada T (1999) Genetic analysis and selection experiment for narrow-sense earliness in wheat by using segregating hybrid progenies. Breed Sci 49:233–238Google Scholar
  28. Kato K, Yamagata H (1988) Evaluation of chilling requirement and narrow-sense earliness of wheat cultivars. Jpn J Breed 38:172–186Google Scholar
  29. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  30. Lander ES, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  31. Law CN, Suarez E, Miller TE, Worland AJ (1998) The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity 80:83–91CrossRefGoogle Scholar
  32. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  33. Liu Y, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) in wheat. II. linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633CrossRefPubMedGoogle Scholar
  34. Marshall DR, Ellison FW, Mares DJ (1984) Effects of grain shape and size on milling yields in wheat. I. Theoretical analysis based on simple geometric models. Aust J Agric Res 35:619–630CrossRefGoogle Scholar
  35. Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning 7840 x Clark. Theor Appl Genet 112:688–698CrossRefPubMedGoogle Scholar
  36. Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of wheat x spelt cross. Theor Appl Genet 98:1163–1170CrossRefGoogle Scholar
  37. Muramatsu M (1963) Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48:469–482PubMedGoogle Scholar
  38. Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheat. Can J Genet Cytol 28:30–41Google Scholar
  39. Nelson JC, Sorrels ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Farris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedGoogle Scholar
  40. Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, Wilkinson MD, Dunwell J, Andersson AAM, Aman P, Guillon F, Saulnier L, Mitchell RAC, Shewry PR (2010) Down-regulation of the CSLF6 gene results in decreased (1, 3;1, 4)-b-D-Glucan in endosperm of Wheat. Plant Physiol 152:1209–1218CrossRefPubMedGoogle Scholar
  41. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242CrossRefPubMedGoogle Scholar
  42. Peng J, Ronin Y, Fahima T, Roder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494CrossRefPubMedGoogle Scholar
  43. Pestsova E, Roder MS (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91PubMedGoogle Scholar
  44. Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697CrossRefPubMedGoogle Scholar
  45. Phillips RL, Vasil IK (2001) DNA-based markers in plants. Kluwer Academic, Dordrech, The NetherlandsGoogle Scholar
  46. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880CrossRefPubMedGoogle Scholar
  47. Roder MS, Korzun V, Wandehake K, Planschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  48. Saghai-Maroof MA, Soliman KM, Jorgensen AR, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedGoogle Scholar
  49. Shah MM, Baenziger PS, Yen Y, Gill KS, Moreno-Sevilla B, Haliloglu K (1999) Genetic analysis of agronomic traits controlled by wheat chromosome 3A. Crop Sci 39:1016–1021CrossRefGoogle Scholar
  50. Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63CrossRefPubMedGoogle Scholar
  51. Simons KJ, Fellers JP, Trick HN, Zhang Z, TaiY S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555CrossRefPubMedGoogle Scholar
  52. Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involving in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255CrossRefGoogle Scholar
  53. Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538PubMedGoogle Scholar
  54. Suenaga K, Khairallah M, William HM, Koisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of ‘gigas’ features in bread wheat. Genome 48:65–75CrossRefPubMedGoogle Scholar
  55. Tonooka T, Aoki E, Yoshioka T, Taketa S (2009) A novel mutant gene for (1–3, 1–4)-β-D-glucanless grain on barley (Hordeum vulgare L.) chromosome 7H. Breed Sci 59:47–54CrossRefGoogle Scholar
  56. Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051CrossRefPubMedGoogle Scholar
  57. Varshney RK, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTLs for grain weight in bread wheat. Theor Appl Genet 100:1290–1294CrossRefGoogle Scholar
  58. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC ( )

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alagu Manickavelu
    • 1
  • Kanako Kawaura
    • 1
  • Hisako Imamura
    • 1
  • Michiko Mori
    • 1
  • Yasunari Ogihara
    • 1
    • 2
    Email author
  1. 1.Kihara Institute for Biological Research, Yokohama City UniversityYokohamaJapan
  2. 2.Plant Genome Science DivisionKihara Institute for Biological Research, Yokohama City UniversityYokohamaJapan

Personalised recommendations