Euphytica

, Volume 176, Issue 1, pp 49–58

Development of a co-dominant DNA marker tightly linked to gene tardus conferring reduced pod shattering in narrow-leafed lupin (Lupinus angustifolius L.)

Article

Abstract

The reduced pod shattering gene tardus is one of the most important domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). In development of a molecular marker linked to the tardus gene, we incorporated the concept of marker validation during the initial candidate marker identification stage. Four dominant microsatellite-anchored fragment length polymorphism (MFLP) markers were identified as candidate markers based on their banding patterns in an F8 recombination inbred line (RIL) population. One specific marker best correlating with phenotypes in the representative germplasm was selected and converted to a simple PCR-based marker. This established marker, designated as “TaLi”, is located at a distance of 1.4 cM from the tardus gene. DNA sequencing revealed six insertion/deletion sites between the non-shattering marker allele and the shattering marker allele. Validation of marker TaLi on 25 domesticated commercial cultivars and 125 accessions of the lupin core collection found a 94% marker and tardus phenotype match. Marker TaLi is the first simple PCR-based marker that can be widely used for non-shattering pod selection in narrow-leafed lupin breeding program.

Keywords

Marker-assisted selection (MAS) Lupinus angustifolius L. Sequence-specific marker MFLP 

References

  1. Boersma J, Nelson M, Sivasithamparam K, Yang H (2009) Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 23:259–267CrossRefGoogle Scholar
  2. Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94CrossRefGoogle Scholar
  3. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128CrossRefGoogle Scholar
  4. Gladstones J (1967) Selection for economic characters in Lupinus angustifolius and L.digitatus. Aust J Exp Agric Anim Husb 7:360–366CrossRefGoogle Scholar
  5. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390CrossRefGoogle Scholar
  6. Hajdera I, Siwinska D, Hasterok R, Maluszynska J (2003) Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor Appl Genet 107:988–996CrossRefPubMedGoogle Scholar
  7. Holland J (2004) Implementation of molecular markers for quantitative traits in breeding programs-challenges and opportunities. In: Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 Sep–1 Oct 2004. (http://www.cropscience.org.au)
  8. Jo Y, Kim Y-M, Park M-N, Yoo J-H, Park M, Kim B-D, Kang B-C (2010) Development and evaluation of broadly applicable markers for Restorer-of-fertility in pepper. Mol Breed 25:187–201CrossRefGoogle Scholar
  9. Kasprzak A, Šafář J, Janda J, Doležel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 11:396–407CrossRefPubMedGoogle Scholar
  10. Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577CrossRefPubMedGoogle Scholar
  11. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410CrossRefPubMedGoogle Scholar
  12. Lin R, Renshaw D, Luckett D, Clements J, Yan G, Adhikari K, Buirchell B, Sweetingham M, Yang H (2009) Development of a sequence-specific PCR marker linked to the gene “pauper” conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Mol Breed 23:153–161CrossRefGoogle Scholar
  13. Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan 25:317–321PubMedGoogle Scholar
  14. Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMedGoogle Scholar
  15. Naganowska B, Wolko B, Sliwinska E, Kaczmarek Z (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355CrossRefPubMedGoogle Scholar
  16. Nelson MN, Moolhuijen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res (in press)Google Scholar
  17. Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu CY, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed 3:341–349CrossRefGoogle Scholar
  18. Sharp PJ, Johnston S, Brown G, McIntosh RA, Pallotta M, Carter M, Bariana HS, Khatkar S, Lagudah ES, Singh RP, Khairallah M, Potter R, Jones MGK (2001) Validation of molecular markers for wheat breeding. Aust J Agric Res 52:1357–1366CrossRefGoogle Scholar
  19. Snape J (2004) Challenges of integrating conventional breeding and biotechnology: a personal view! Proceeding of the 4th international crop science congress Brisbane, Australia, 26 Sep–1 Oct 2004. http://www.cropscience.org.au
  20. Staub JE, Serquen FC, Gupta M (1996) Genetic markers, map construction, and their application in plant breeding. Hortscience 31:729–741Google Scholar
  21. Vos P, Hogers R, Bleeker M, Reijans M, TVD Lee, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  22. Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms. and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7:203–209CrossRefGoogle Scholar
  23. Yang H, Shankar M, Buirchell B, Sweetingham M, Caminero C, Smith P (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 105:265–270CrossRefPubMedGoogle Scholar
  24. Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14:145–151CrossRefGoogle Scholar
  25. Yang H, Renshaw D, Thomas G, Buirchell B, Sweetingham M (2008) A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.). Mol Breed 21:473–483CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xin Li
    • 1
  • Daniel Renshaw
    • 2
  • Huaan Yang
    • 2
  • Guijun Yan
    • 1
  1. 1.School of Plant Biology, Faculty of Natural and Agricultural Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyAustralia
  2. 2.Department of Agriculture and Food Western AustraliaSouth PerthAustralia

Personalised recommendations