Skip to main content
Log in

The effect of spot blotch and heat stress on variation of canopy temperature depression, chlorophyll fluorescence and chlorophyll content of hexaploid wheat genotypes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsler ex Dastur, and heat stress are two important stresses of bread wheat (Triticum aestivum L.) causing substantial yield reduction in the warm areas of South Asia. These two stresses put pressure on at least 25 million hectares of wheat areas worldwide. This study was conducted to examine variation in physiological traits and its association with heat and spot blotch. Eleven diverse bread wheat genotypes were evaluated in replicated field trials under spot blotch epidemics and heat stress conditions in 2006 and 2007 at Rampur, Nepal. Canopy temperature depression (CTD), chlorophyll fluorescence (CF), chlorophyll content, percent disease leaf area, yield and yield components were recorded. Heat and spot blotch individually reduced CTD, CF, chlorophyll content, grain yield (GRY), and thousand kernel weight (TKW), with greater reductions recorded under combined stress. Genotypes showing lower GRY or TKW loss due to spot blotch also exhibited lower yield loss due to heat stress or combined heat and disease stress, suggesting an association between tolerance mechanisms to the stresses. The physiological traits chlorophyll content, CF and CTD showed higher correlations with GRY and TKW than with area under disease progress curve (AUDPC) suggesting their potential application in screening for heat and spot blotch tolerant genotypes. Genotypes with lower disease showed the highest values for chlorophyll content, CF and CTD. Our findings provide new information on the relationship of these physiological traits with spot blotch resistance and heat tolerance when examined in the same study. The physiological traits studied have potential application in integrative indirect selection criteria for improving spot botch and heat tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUCTDPC:

Area under the canopy temperature depression curve

AUDPC:

Area under disease progress curve

AUFDC:

Area under chlorophyll fluorescence decline curve

AUSDC:

Area under SPAD decline curve

CF:

Chlorophyll fluorescence

CTD:

Canopy temperature depression

EGP:

Eastern Gangetic plains

GRY:

Grain yield

SPAD:

Soil plant analysis development

TKW:

Thousand kernel weight

References

  • Al-Khatib K, Paulsen GM (1984) Mode of high temperature injury to wheat during grain development. Physiol Plant 61:363–368

    Article  CAS  Google Scholar 

  • Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in hot climate. J Agron Crop Sci 176:119–129

    Article  Google Scholar 

  • Babar MA, Reynolds MP, van Ginkel M, Klatt AR et al (2006) Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci 46:1046–1057

    Article  Google Scholar 

  • Balota M, Amani I, Reynolds MP, Acevedo E (1993) Evaluation of membrane thermostability and canopy temperature depression as screening traits for heat tolerance in wheat. Wheat Special Report No. 20. CIMMYT International, Mexico, DF

  • Bassanezi RB, Amorim L, Bergamin Filho A, Berger RD (2002) Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. J Phytopathol 150:37–47

    Article  CAS  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Brennan JP, Condon AG, van Ginkel M, Reynolds MP (2007) An economic assessment of the use of physiological selection for stomatal aperture-related traits in the CIMMYT breeding program. J Agric Sci 145:187–194

    Article  Google Scholar 

  • Briquet M, Vilret D, Goblet P, Mesa M, Eloy MC (1998) Plant cell membranes as biochemical targets of the phytotoxin helminthosporol. J Bioenerg Biomembr 30:285–295

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Moss DN (1989) Day length effect on leaf emergence and phyllochron in wheat and barley. Crop Sci 29:1021–1025

    Google Scholar 

  • Chaerle L, Hagenbeek D, Bruyne ED, Van Der Straeten D (2007) Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell Tiss Organ Cult 91:97–106

    Article  CAS  Google Scholar 

  • Das MK, Rajaram S, Mundt CC, Kronstad WE (1992) Inheritance of slow rusting resistance to leaf rust in wheat. Crop Sci 32:1452–1456

    Google Scholar 

  • Dehne HW, Oerke EC (1985) Investigations on the occurrence of Cochliobolus sativus on barley and wheat. Vol. 2. Infection, colonization, and damage to stem and leaves. J Plant Dis Prot 92:606–617

    Google Scholar 

  • del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci 40:1257–1263

    Article  Google Scholar 

  • Duraes FOM, Gama EEG, Malchaes PC, Marriel et al (2001) The usefulness of Chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminum toxicity, and use efficiency in maize. In: Proc 7th Eastern & Southern African Regional Maize Conference, Nairobi, Kenya, 11th–15th Feb, 2001. CIMMYT international, DF, Mexico, pp 356–360

  • Duveiller E, Kandel YR, Sharma RC, Shrestha SM (2005) Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248–256

    Article  CAS  PubMed  Google Scholar 

  • Earl HJ, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95:688–696

    Article  Google Scholar 

  • Earl HJ, Tollenaar M (1999) Using chlorophyll fluorometry to compare photosynthetic performance of commercial maize (Zea mays L.) hybrids in the field. Field Crops Res 61:201–210

    Article  Google Scholar 

  • Eilam Y, Klein S (1962) The effect of light intensity and sucrose feeding on the fine structure in chloroplasts and on the chlorophyll content of etiolated leaves. J Cell Biol 14:169–182

    Article  CAS  PubMed  Google Scholar 

  • Evans LT, Wardlaw IF, Fischer RA (1975) Wheat. In: Evans LT (ed) Crop physiology. University Press, Cambridge, pp 101–149

    Google Scholar 

  • Eyal Z, Blum A (1989) Canopy temperature as a correlative measure for assessing host response to Septoria tritici blotch of wheat. Plant Dis 73:468–471

    Article  Google Scholar 

  • Garty J, Tamir O, Hasid I, Eschel A et al (2001) Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J Environ Qual 30:884–893

    Article  CAS  PubMed  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York, NY, USA

    Google Scholar 

  • Joshi AK, Ortiz-Ferrara G, Crossa J, Singh G et al (2007a) Combining superior agronomic performance and terminal heat tolerance with resistance to spot blotch (Bipolaris sorokiniana) of wheat in the warm humid Gangetic plains of South Asia. Field Crops Res 103:53–61

    Article  Google Scholar 

  • Joshi AK, Kumari M, Singh VP, Reddy CM et al (2007b) Stay green trait: variation. inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 153:59–71

    Article  Google Scholar 

  • Kumari M, Singh VP, Tripathi R, Joshi AK (2007) Variation for staygreen trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. Dev Plant Breed 12:357–363

    Article  Google Scholar 

  • Leinonen I, Jones HG (2004) Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Moffatt JM, Sears RG, Paulsen GM (1990a) Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Sci 30:881–885

    Article  CAS  Google Scholar 

  • Moffatt LM, Sears RG, Cox TS, Paulsen GM (1990b) Wheat high temperature tolerance during reproductive growth: II. Genetic analysis of chlorophyll fluorescence. Crop Sci 30:886–889

    Article  CAS  Google Scholar 

  • Moya I, Camenen L, Evain S, Goulas Y et al (2004) A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91:186–197

    Article  Google Scholar 

  • Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith RE (2005) Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci Hort 104:2199–2209

    Google Scholar 

  • Opti-Sciences (2004) OS-30P Chlorophyll Fluorometer operators manual. Opti-Sciences, Inc, Hudson, NH, USA

    Google Scholar 

  • Reynolds KL, Neher DA (1997) Statistical comparison of epidemics. In: Francl LJ, Neher DA (eds) Exercises in plant disease epidemiology. APS Press, St. Paul, MN, USA, pp 34–37

    Google Scholar 

  • Reynolds MP, Singh RP, Ibrahim A, Ageeb OAA et al (1998) Evaluating the physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85–94

    Article  Google Scholar 

  • Reynolds MP, Nagarajan S, Razzaque MA, Ageeb OAA (2002) Heat tolerance. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT International, DF, Mexico

    Google Scholar 

  • Reynolds MP, Saint Pierre C, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47:172–189

    Article  Google Scholar 

  • Rosyara UR, Sharma RC, Shrestha SM, Duveiller E (2005) Yield and yield components response to defoliation of spring wheat genotypes with different level of resistance to Helminthosporium leaf blight. J Inst Agric Anim Sci 26:43–50

    Google Scholar 

  • Rosyara UR, Pant K, Duveiller E, Sharma RC (2007) Variation in chlorophyll content, anatomical traits and agronomic performance of wheat genotypes differing in spot blotch resistance under natural epiphytotic conditions. Aust Plant Pathol 36:245–251

    Article  CAS  Google Scholar 

  • Rosyara UR, Vromman D, Duveiller E (2008) Canopy temperature depression as an indication of correlative measure of spot blotch resistance and heat stress tolerance in spring wheat. J Plant Pathol 90:103–107

    Google Scholar 

  • Rosyara UR, Khadka K, Subedi S, Sharma RC, Duveiller E (2009a) Field resistance to spot blotch is not associated with undesirable physio-morphological traits in three spring wheat populations. J Plant Pathol 91:113–122

    Google Scholar 

  • Rosyara UR, Subedi S, Sharma RC, Duveiller E (2009b) Spot blotch and terminal heat stress tolerance in south Asian spring wheat genotypes. Acta Agron Hung 57:425–435

    Article  Google Scholar 

  • SAS Institute (2003) SAS 9.1 for Windows. SAS Inst, Cary, NC

    Google Scholar 

  • Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    Article  CAS  Google Scholar 

  • Sayed OH, Emes MJ, Earnshaw MJ, Butler RD (1989) Photosynthetic responses of different varieties of wheat to high temperature. I. Effect of growth temperature on development and photosynthetic performance. J Exp Bot 40:625–631

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll florescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis (Ecological studies, vol. 100). Springer, Berlin, Heidelberg, New York, pp 49–70

    Google Scholar 

  • Sharma RC, Duveiller E (2004) Effect of Helminthosporium leaf blight on performance of timely and late-seeded wheat under optimal and stressed levels of soil fertility and moisture. Field Crops Res 89:205–218

    Article  Google Scholar 

  • Sharma RC, Duveiller E (2007) Advancement toward new Spot blotch resistant wheats in south Asia. Crop Sci 47:961–968

    Article  Google Scholar 

  • Sharma RC, Dubin HJ, Bhatta MR, Devkota RN (1997) Selection for spot blotch resistance in four spring wheat populations. Crop Sci 37:432–435

    Article  Google Scholar 

  • Sharma RC, Duveiller E, Ahmed F, Arun B et al (2004) Helminthosporium leaf blight resistance and agronomic performance of wheat genotypes across warm regions of South Asia. Plant Breed 123:520–524

    Article  Google Scholar 

  • Sharma RC, Duveiller E, Ortiz-Ferrara G (2007a) Progress and challenge towards reducing wheat spot blotch threat in the eastern Gangetic plains of South Asia: is climate change already taking its toll? Field Crops Res 103:109–118

    Article  Google Scholar 

  • Sharma RC, Ortiz-Ferrara G, Bhatta MR (2007b) Regional trial results show wheat yield declining in the eastern Gangetic plains of south Asia. Asian J Plant Sci 6:638–642

    Article  Google Scholar 

  • Sharma RC, Tiwary AK, Ortiz-Ferrara G (2008) Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under terminal heat stress. Plant Breed 127:241–248

    Article  Google Scholar 

  • Shpiler L, Blum A (1986) Differential reaction of wheat cultivars to hot environments. Euphytica 35:483–492

    Article  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Co, New York, USA

    Google Scholar 

  • van Ginkel M, Reynolds MP, Trethowan R, Hernandez E (2008) Complementing the breeder’s eye with canopy temperature measurements. In: Reynolds MP, Pietragalla J, Braun HJ (eds) Challenges to international wheat breeding. CIMMYT International, DF, Mexico

    Google Scholar 

  • Wiegand CL, Cuellar JA (1981) Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Sci 21:95–101

    Article  Google Scholar 

  • Wu B, Yue Z, Gao P (2006) Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys Sin 38:372–378

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica 126:185–193

    Article  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zavorueva EN, Ushakova SA (2004) Characteristics of slow induction curve of chlorophyll fluorescence and CO2 exchange for the assessment of plant heat tolerance at various levels of light intensity. Russ J Plant Physiol 51:294–301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by International Foundation for Science (IFS), Sweden. We thank the anonymous reviewers and Dr. Mohammed Karrou, ICARDA for suggestions for improving the manuscript. We thank Professor Leon Wrage, South Dakota State University, Brookings, South Dakota, USA for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh R. Rosyara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosyara, U.R., Subedi, S., Duveiller, E. et al. The effect of spot blotch and heat stress on variation of canopy temperature depression, chlorophyll fluorescence and chlorophyll content of hexaploid wheat genotypes. Euphytica 174, 377–390 (2010). https://doi.org/10.1007/s10681-010-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0136-9

Keywords

Navigation