, Volume 173, Issue 1, pp 113–120 | Cite as

Intra- and intergenomic relationships in interspecific hybrids between Brassica (B. rapa, B. napus) and a wild species B. maurorum as revealed by genomic in situ hybridization (GISH)

  • Xing-Cheng Yao
  • Xian-Hong Ge
  • Ji-Peng Chen
  • Zai-Yun LiEmail author


Interspecific hybridization plays a crucial role in plant genetics and breeding. The efficiency of interspecific crosses to a considerable extent depends on the genetic relatedness of genomes from parental species. Interspecific hybrids involving Brassica maurorum (2n = 16, MM) and two Brassica crop species, viz B. rapa (2n = 20, AA) and B. napus (2n = 38, AACC), were produced and analyzed for their meiotic chromosome pairings in pollen mother cells (PMCs) by using genomic in situ hybridization (GISH) with the labeled DNA of B. maurorum (MM) as probe. In hybrids B. maurorum × B. rapa (2n = 18, MA), all chromosomes remained unpaired in 28% PMCs, and the maximum of autosyndetic bivalents was two and one among the chromosomes of A and M genomes, with the average per cell being 0.27 and 0.12, respectively. Up to two allosyndetic bivalents between A and M genomes appeared, averagely 0.48 per cell. In hybrids B. maurorum × B. napus (2n = 27, MAC), the maximum of autosyndetic bivalents in M genome was two and the average was 0.11, while the maximum of allosyndetic bivalents between M and A/C genomes was two and the average was 0.78. The 2–7 bivalents formed by A/C-genome chromosomes showed their high homology. The results were compared and discussed with the chromosome pairings in the hybrids of B. maurorum with B. juncea and B. carinata with respect to the genome relationships and the potential for chromosome recombination.


Brassica maurorum Brassica rapa Brassica napus Chromosome pairing Genomic in situ hybridization (GISH) Interspecific hybrid 


  1. Armstrong KC, Keller WA (1981) Chromosomes pairing in haploid of Brassica campestris. Theor Appl Genet 59:49–52. doi: 10.1007/BF00275776 Google Scholar
  2. Armstrong KC, Keller WA (1982) Chromosomes pairing in haploid of Brassica oleracea. Can J Genet Cytol 24:735–739Google Scholar
  3. Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630. doi: 10.1111/j.1469-8137.2005.01433.x CrossRefPubMedGoogle Scholar
  4. Benabdelmouna A, Guéritaine G, Abirached-Darmency M, Darmency H (2003) Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Genome 46:469–472. doi: 10.1139/G03-020 CrossRefPubMedGoogle Scholar
  5. Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna KR (1999) Production and characterization of interspecific hybrids between B. maurorum and crop Brassicas. Theor Appl Genet 98:608–613. doi: 10.1007/s001220051111 CrossRefGoogle Scholar
  6. Fahleson J, Lagercrantz U, Mouras A, Glimelius K (1997) Characterization of somatic hybrids between Brassica napus and Eruca sativa using species-specific repetitive sequences and genomic in situ hybridization. Plant Sci 123:133–142. doi: 10.1016/s0168-9452(96)04575-x CrossRefGoogle Scholar
  7. Garg H, Banga S, Bansal P, Atri C, Banga SS (2007) Hybridizing Brassica rapa with wild crucifers Diplotaxis erucoides and Brassica maurorum. Euphytica 156:417–424. doi: 10.1007/s10681-007-9391-9 CrossRefGoogle Scholar
  8. Ge XH, Li ZY (2007) Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis. Chromosome Res 15:849–861. doi: 10.1007/s10577-007-1168-4 CrossRefPubMedGoogle Scholar
  9. Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180:1849–1857. doi: 10.1534/Genetics,108.095893 CrossRefPubMedGoogle Scholar
  10. Ji Y, Pertuze R, Chetelat RT (2004) Genome differentiation by GISH in interspecific and intergeneric hybrids of tomato and related nightshades. Chromosome Res 12:107–116. doi: 10.1023/B:CHRO.0000013162.33200.61 CrossRefPubMedGoogle Scholar
  11. Kamstra SA, Ramanna MS, De Jeu MJ, Kuipers GJ, Jacobsen E (1999) Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea × A. inodora and the genome composition of its backcross derivatives determined by fluorescent in situ hybridization with species-specific probes. Heredity 82:69–78. doi: 10.1046/j.1365-2540.1999.00465.x CrossRefPubMedGoogle Scholar
  12. Karlov GI, Khrustaleva LI, Lim KB, Van Tuyl JM (1999) Homoeologous recombination in 2n-gamete producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–686. doi: 10.1139/gen-42-4-681 CrossRefGoogle Scholar
  13. Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) Microscopy handbook No.27. In situ hybridization: a practical guide. Bios Scientific, OxfordGoogle Scholar
  14. Li MT, Li ZY, Zhang CY, Qian W, Meng JL (2005) Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theor Appl Genet 110:1284–1289. doi: 10.1007/s00122-005-1965-0 CrossRefPubMedGoogle Scholar
  15. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L et al (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348. doi: 10.1104/pp.105.066308 CrossRefPubMedGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  17. Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chèvre AM, Jenczewski E (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503. doi: 10.1534/genetics.106.062968 CrossRefPubMedGoogle Scholar
  18. Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L, Coriton O, Chèvre AM, Jenczewski E (2008) Chromosome ‘speed dating’ during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res 120:331–338. doi: 10.1159/000121082 CrossRefPubMedGoogle Scholar
  19. Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IAP et al (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577PubMedGoogle Scholar
  20. Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA et al (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688. doi: 10.1111/j.1095-8312.2004.00350.x CrossRefGoogle Scholar
  21. Pradhan AK, Prakash S, Mukhopadhyay A, Pental D (1992) Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomical classifications are incongruous. Theor Appl Genet 85:331–340. doi: 10.1007/BF00222878 CrossRefGoogle Scholar
  22. Prakash S (1973) Haploidy in Brassica nigra Koch. Euphytica 22:613–614. doi: 10.1007/BF00036663 CrossRefGoogle Scholar
  23. Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187CrossRefGoogle Scholar
  24. Rieseberg LH, Vanfossen C, Desrochers AM (1995) Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375:313–316. doi: 10.1038/375313a0 CrossRefGoogle Scholar
  25. Snowdon RJ, Kohler W, Friedt W, Kohler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324. doi: 10.1007/s001220050699 CrossRefGoogle Scholar
  26. Snowdon RJ, Winter H, Diestal A, Sacristan MD (2000) Development and characterization of Brassica napus-Sinapis arvensis addition line exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet 101:1008–1014. doi: 10.1007/s001220051574 CrossRefGoogle Scholar
  27. Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723CrossRefPubMedGoogle Scholar
  28. Stevenson M, Armstrong SJ, Ford-Lloyd BV, Jones GH (1998) Comparative analysis of crossover exchanges and chiasmata in Allium cepa × fistulosum after genomic in situ hybridization (GISH). Chromosome Res 6:567–574. doi: 10.1023/A:1009296826942 CrossRefPubMedGoogle Scholar
  29. Takahata Y, Hinata K (1983) Studies on cytodemes in the subtribe Brassicinae. Tohoku J Agric Res 33:111–124Google Scholar
  30. Thompson KF (1956) Production of haploid plants of narrow stem kale. Nature 178:748. doi: 10.1038/178748a0 CrossRefGoogle Scholar
  31. Truco MJ, Hu J, Sadowski J, Quiros CF (1996) Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet 93:1225–1233. doi: 10.1007/BF00223454 CrossRefGoogle Scholar
  32. Wang YP, Zhao XX, Sonntag K, Wehling P, Snowdon RJ (2005) Behaviour of Sinapis alba addition chromosomes in a Brassica napus background revealed by genomic in situ hybridization. Chromosome Res 13:819–826. doi: 10.1007/s10577-005-1017-2 CrossRefPubMedGoogle Scholar
  33. Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92. doi: 10.1007/BF00231281 CrossRefGoogle Scholar
  34. Yao XC, Du XZ, Ge XH, Chen JP, Li ZY (2010) Intra- and intergenomic chromosome pairings revealed by dual-color GISH in Brassica trigenomic hybrids of Brasscia juncea and B. carinata with B. maurorum. Genome 53:14–22. doi: 10.1139/G09-082 CrossRefPubMedGoogle Scholar
  35. Zhong XB, Hans JJ, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28. doi: 10.1007/BF02254940 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xing-Cheng Yao
    • 1
  • Xian-Hong Ge
    • 1
  • Ji-Peng Chen
    • 1
  • Zai-Yun Li
    • 1
    Email author
  1. 1.National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations