, Volume 169, Issue 3, pp 335–344 | Cite as

Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert

  • Freddy Mora
  • Roslyn Gleadow
  • Sandra Perret
  • Carlos Alberto Scapim


The aim of this study was to examine the genetic control of time-to-flowering (precocity) in 39 open-pollinated families of Eucalyptus cladocalyx in southern Atacama Desert, Chile, with the view to the selection of trees that flower earlier but with minimal impact on survival and growth. A Bayesian approach, implemented using Gibbs sampling algorithm, was used in data analyses. Precocity was assessed as a binary response at age three and was found to be highly heritable. The estimates of posterior mean and of the 95% posterior interval of the heritability were 0.51 and [0.46–0.56], respectively. Estimated genetic gain ranged from 36.15 to 41.22% (selection intensities of 14.29 and 7.48%, respectively). Total height, basal diameter and survival (measured at age 5) had a positive and relatively moderate genetic correlation with early flowering (r = 0.23, 0.29 and 0.11, respectively) indicating that selection for early flowering alone would have a moderate impact on growth and survival. Early flowering of Eucalyptus cladocalyx was found to be highly heritable in southern Atacama Desert populations, which could be used to improve the honey production in situations where flowers from native species are not available in sufficient quantities.


Arid environmental conditions Breeding value Genetic gain Gibbs sampling Heritability 





Early flowering


Genetic diversity


Predicted genetic advance




Monte-Carlo Markov Chain


Number of selected families





The financial support for this work was provided by the Development and Innovation Fund of the Chilean Ministry of Economy. We thank farmers of the rural community of Tunga Norte. CSIRO Australian Tree Seed Centre kindly provided seeds of the Australian population used in this study.


  1. Akhter J, Mahmood K, Tasneem MA, Malik KA, Naqvi MH, Hussain F, Serraj R (2005) Water-use efficiency and carbon isotope discrimination of Acacia ampliceps and Eucalyptus camaldulensis at different soil moisture regimes under semi-arid conditions. Biol Plant 49:269–272. doi: 10.1007/s10535-005-0272-6 CrossRefGoogle Scholar
  2. Akilan K, Marshall JK, Morgan AL, Farrell RCC, Bell DT (1997) Restoration of catchment water balance: responses of clonal river red gum (Eucalyptus camaldulensis) to waterlogging. Restor Ecol 5:101–108. doi: 10.1046/j.1526-100X.1997.09712.x CrossRefGoogle Scholar
  3. Bink MCAM, Boer MP, ter Braak CJF, Cansen J, Voorrips RE, van de Weg WE (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96. doi: 10.1007/s10681-007-9516-1 CrossRefGoogle Scholar
  4. Blasco A (2001) The Bayesian controversy in animal breeding. J Anim Sci 79:2023–2046PubMedGoogle Scholar
  5. Cappa EP, Cantet RJC (2006) Bayesian inference for normal multiple-trait individual-tree models with missing records via full conjugate Gibbs. Can J For Res 36:1276–1285. doi: 10.1139/X06-024 CrossRefGoogle Scholar
  6. Chambers PGS, Potts BM, Tilyard PA (1997) The genetic control of flowering precocity in Eucalyptus globulus ssp. globulus. Silvae Genet 46:207–214Google Scholar
  7. Clarke JH, Mithen R, Brown JKM, Dean C (1995) QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet 248:278–286. doi: 10.1007/BF02191594 PubMedCrossRefGoogle Scholar
  8. Cohen Y, Adar E, Dody A, Schiller G (1997) Underground water use by Eucalyptus trees in an arid climate. Trees Struct Funct 11:356–362Google Scholar
  9. Furlani RCM, Moraes MLT, Resende MDV, Furlani-Junior E, Gonçalves PS, Valério-Filho WV, Paiva JR (2005) Estimation of variance components and prediction of breeding values in rubber tree breeding using the REML/BLUP procedure. Genet Mol Biol 28:271–276. doi: 10.1590/S1415-47572005000200017 CrossRefGoogle Scholar
  10. Gleadow RM, Woodrow IE (2000) Polymorphism in cyanogenic glycoside content and cyanogenic beta-glucosidase activity in natural populations of Eucalyptus cladocalyx. Aust J Plant Physiol 27:693–699Google Scholar
  11. Gleadow RM, Woodrow IE (2002) Defence chemistry of Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol 22:939–945PubMedGoogle Scholar
  12. Gonçalves-Vidigal MC, Mora F, Bignotto TS, Munhoz REF, Souza LD (2008) Heritability of quantitative traits in segregating common bean families using a Bayesian approach. Euphytica. doi: 10.1007/s10681-008-9758-6
  13. Hajari E, Watt MP, Mycock DJ, McAlister B (2006) Plant regeneration from induced callus of improved Eucalyptus clones. S Afr J Bot 72:195–201. doi: 10.1016/j.sajb.2005.07.003 CrossRefGoogle Scholar
  14. Hanks LM, Paine TD, Millar JG, Hom JL (1994) Variation among Eucalyptus species in resistance to eucalyptus longhorned borer in Southern California. Entomol Exp Appl 74:185–194. doi: 10.1007/BF02383010 CrossRefGoogle Scholar
  15. He D, Barr C (2004) China’s pulp and paper sector: an analysis of supply-demand and medium term projections. Int For Rev 6:254–266Google Scholar
  16. Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31:1109–1114. doi: 10.1287/opre.31.6.1109 CrossRefGoogle Scholar
  17. Manikis I, Thrasivoulou A (2001) The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta 36:106–112Google Scholar
  18. Marcar NE, Crawford DF, Leppert PM, Jovanovic T, Floyd R, Farrow R (1995) Trees for saltland: a guide to selecting native species for Australia. CSIRO Publications, Melbourne, p 72Google Scholar
  19. Marcar NE, Zohar Y, Guo J, Crawford DF (2002) Effect of NaCl and high pH on seedling growth of 15 Eucalyptus camaldulensis Dehnh. provenances. New For 23:193–206. doi: 10.1023/A:1020334418883 Google Scholar
  20. McDonald MW, Rawlings M, Butcher PA, Bell JC (2003) Regional divergence and inbreeding in Eucalyptus cladocalyx (Myrtaceae). Aust J Bot 51:393–403. doi: 10.1071/BT02106 CrossRefGoogle Scholar
  21. Meilan R (1997) Floral induction in woody angiosperms. New For 14:179–202. doi: 10.1023/A:1006560603966 Google Scholar
  22. Melchinger AE, Utz HF, Schön CC (2004) QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods. Euphytica 137:1–11. doi: 10.1023/B:EUPH.0000040498.48379.68 CrossRefGoogle Scholar
  23. Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J Clim 16:281–296. doi: 10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2 CrossRefGoogle Scholar
  24. Montenegro G, Pizarro R, Ávila G, Castro R, Ríos C, Muñoz O, Bas F, Gómez M (2003) Origen botánico y propiedades químicas de las mieles de la región mediterránea árida de Chile. Cienc Invest Agraria 30:161–174Google Scholar
  25. Mora F (2006) Heredabilidad y valor genético (reml/blup) en genotipos de un eucalipto tolerante a la sequía, en el norte de Chile. Cienc Florestal 16:145–151Google Scholar
  26. Mora F, Tapia F, Scapim CA, Martins EN (2007) Vegetative growth and early production of six olive cultivars, in southern Atacama desert, Chile. J Cent Eur Agric 8:269–276Google Scholar
  27. Mora F, Tapia F, Scapim CA, Martins EN, Pinto RJB, Ibacache A (2008) Early performance of Olea europaea cv. Arbequina, Picual and Frantoio in southern Atacama Desert. Crop Breed Appl Biotechnol 8:30–38Google Scholar
  28. Ormazábal CS (1991) Silvopastoral systems in arid and semiarid zones of northern Chile. Agrofor Syst 14:207–217. doi: 10.1007/BF00115736 CrossRefGoogle Scholar
  29. Rawat JS, Banerjee SP (1998) The influence of salinity on growth, biomass production and photosynthesis of Eucalyptus camaldulensis Dehnh. and Dalbergia sissoo Roxb. seedlings. Plant Soil 205:163–169. doi: 10.1023/A:1004381021039 CrossRefGoogle Scholar
  30. Ruthrof KX, Loneragan WA, Yates CJ (2003) Comparative population dynamics of Eucalyptus cladocalyx in its native habitat and as an invasive species in an urban bushland in south-western Australia. Divers Distrib 9:469–483. doi: 10.1046/j.1472-4642.2003.00040.x CrossRefGoogle Scholar
  31. Ruzzante DE, Hansen MM, Meldrup D, Ebert KM (2004) Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Mol Ecol 13:1433–1445. doi: 10.1111/j.1365-294X.2004.02162.x PubMedCrossRefGoogle Scholar
  32. SAS-Institute (1996) Statistical analysis system: user’s guide. SAS Institute, CaryGoogle Scholar
  33. Sorya F, Basurco F, Toval G, Silió L, Rodríguez MC, Toro M (1998) An application of Bayesian techniques to the genetic evaluation of growth traits in Eucalyptus globulus. Can J For Res 28:1286–1294. doi: 10.1139/cjfr-28-9-1286 CrossRefGoogle Scholar
  34. Spiegelhalter DJ, Thomas A, Best NG, Lunn D (2003) WinBUGS Version 1.4 Users Manual. MRC Biostatistics Unit, CambridgeGoogle Scholar
  35. Squeo FA, Tracol Y, López D, Gutiérrez JR, Cordova AM, Ehleringer JR (2006) ENSO effects on primary productivity in Southern Atacama desert. Adv Geosci 6:273–277CrossRefGoogle Scholar
  36. Ungerer MC, Halldorsdottir SS, Purugganan MD, Mackay TFC (2003) Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165:353–365PubMedGoogle Scholar
  37. Van-Dijk H, Hautekèete N (2007) Long day plants and the response to global warming: rapid evolutionary change in day length sensitivity is possible in wild beet. J Evol Biol 20:349–357. doi: 10.1111/j.1420-9101.2006.01192.x PubMedCrossRefGoogle Scholar
  38. Van-Tassell CP, Van-Vleck LD (1996) Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference. J Anim Sci 74:2586–2597PubMedGoogle Scholar
  39. Van-Tassell CP, Van-Vleck LD, Gregory KE (1998) Bayesian analysis of twinning and ovulation rates using a multiple-trait threshold model and Gibbs sampling. J Anim Sci 76:2048–2061PubMedGoogle Scholar
  40. Waldmann P, Ericsson T (2006) Comparison of REML and Gibbs sampling estimates of multi-trait genetic parameters in Scots pine. Theor Appl Genet 112:1441–1451. doi: 10.1007/s00122-006-0246-x PubMedCrossRefGoogle Scholar
  41. Wei RP, Lindgren D (1996) Effective family number following selection with restrictions. Biometrics 52:198–208. doi: 10.2307/2532892 CrossRefGoogle Scholar
  42. Wildy DT, Pate JS, Bartle JR (2004) Budgets of water use by Eucalyptus kochii tree belts in the semi-arid wheatbelt of Western Australia. Plant Soil 262:129–149. doi: 10.1023/ CrossRefGoogle Scholar
  43. Williams WD (2000) Dryland lakes. Lakes Reserv Res Manage 5:207–212. doi: 10.1046/j.1440-1770.2000.00116.x CrossRefGoogle Scholar
  44. Williams DR, Potts BM, Smethurst PJ (2003) Promotion of flowering in Eucalyptus nitens by paclobutrazol was enhanced by nitrogen fertilizer. Can J For Res 33:74–78. doi: 10.1139/x02-157 CrossRefGoogle Scholar
  45. Wiltshire RJE, Reid JB, Potts BM (1998) Genetic control of reproductive and vegetative phase change in the Eucalyptus risdoniiE. tenuiramis complex. Aust J Bot 46:45–63. doi: 10.1071/BT97020 CrossRefGoogle Scholar
  46. Woodrow IE, Slocum D, Gleadow RM (2002) Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx. Aust J Plant Physiol 29:103–110Google Scholar
  47. Wright DR, Stern HS, Berger PJ (2000) Comparing traditional and Bayesian analyses of selection experiments in animal breeding. J Agric Biol Environ Stat 5:240–256. doi: 10.2307/1400533 CrossRefGoogle Scholar
  48. YueMing J, Lihu Y, Singanusong R, Datta N, Raymont K (2004) Phenolic acids and abscisic acid in Australian Eucalyptus honeys and their potential for floral authentication. Food Chem 86:169–177. doi: 10.1016/j.foodchem.2003.08.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Freddy Mora
    • 1
  • Roslyn Gleadow
    • 2
  • Sandra Perret
    • 3
  • Carlos Alberto Scapim
    • 4
  1. 1.Facultad de Ciencias ForestalesUniversidad de Concepción, Victoria 631, Barrio UniversitarioConcepciónChile
  2. 2.School of Biological SciencesMonash UniversityClaytonAustralia
  3. 3.Instituto de Investigación ForestalMinisterio de Agricultura de ChileSantiagoChile
  4. 4.Departamento de AgronomiaUniversidade Estadual de MaringáMaringaBrazil

Personalised recommendations