Advertisement

Euphytica

, Volume 169, Issue 2, pp 215–226 | Cite as

Development of gene-tagged markers for quantitative trait loci underlying rice yield components

  • Chang-Jie Yan
  • Song Yan
  • Ya-Chun Yang
  • Xiu-Hong Zeng
  • Yu-Wei Fang
  • Sheng-Yuan Zeng
  • Chun-Yan Tian
  • Ya-Wei Sun
  • Shu-Zhu Tang
  • Ming-Hong Gu
Article

Abstract

Higher yields of rice have always been a predominant goal in rice breeding techniques. However, the inheritances of rice yield and its components are still unknown, and no information regarding suitable alleles can be directly provided for improving the rice yield level until three major quantitative trait loci (QTLs) have been cloned and functionally characterized. These QTLs contain Gn1a for grain number per panicle and GS3 and GW2 for grain weight. It has been proven that these three genes show a potential in improving the rice yield level. However, the distribution of suitable alleles on these three loci in rice cultivars and germ plasm are yet to be elucidated, this retards the progress of the utilization of suitable alleles in rice breeding techniques to produce higher yields. In the present study, we developed a set of gene-tagged markers based on the gene mutation sites Gn1a-M1 and Gn1a-M2 for Gn1a, GW2-HapI for GW2, and GS3-PstI for GS3. The results demonstrated that these STS markers could clearly differentiate between the different alleles at each gene locus. A survey of the allele distributions of the abovementioned three genes was performed with 156 cultivars. It was observed that the 5150-Gn1a allele was absent on the Gn1a locus and only two type alleles (Ha-Gn1a and Ko-Gn1a) were present, of which 54.3% indica and 21.5% japonica cultivars contained the Ha-Gn1a allele. Two alleles (MH-GS3 and ZS-GS3) were detected on the GS3 locus, and 48.6% indica and 9.9% japonica cultivars harbored the suitable allele MH-GS3. Further, all the cultivars contained the FA-GW2 allele on GW2, whereas the WY-GW2 allele was not found. These results further suggested that some of the alleles residing in the indica subspecies have introgressed into the japonica group with a very low frequency. The gene-tagged markers developed in the present study can be directly used as a tool for marker-aided selection (MAS) in rice breeding techniques to produce higher yields.

Keywords

Rice Yield component Gene-tagged marker Marker-aided selection 

Notes

Acknowledgments

We give thanks to Dr. Lin HX (Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, the Chinese Academy of Sciences) for his kindly providing the material WY3 and FAZ1, and critical suggestion. This research was in part supported by grants from the National Natural Science Foundation of China (no. 30771323) and the Ministry of Science and Technology of China (no. 2006AA10Z118 and no.2006CB101700).

References

  1. Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11(7):344–350. doi: 10.1016/j.tplants.2006.05.008 PubMedCrossRefGoogle Scholar
  2. Ashikari M, Sakakibara HI, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745. doi: 10.1126/science.1113373 PubMedCrossRefGoogle Scholar
  3. Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH (2004) Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice. Chin J Biotechnol 20(5):708–714Google Scholar
  4. Davierwala AP, Reddy AP, Lagu MD, Ranjekar PK, Gupta VS (2001) Marker assisted selection of bacterial blight resistance genes in rice. Biochem Genet 39(7–8):261–278. doi: 10.1023/A:1010282732444 PubMedCrossRefGoogle Scholar
  5. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XiH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171. doi: 10.1007/s00122-006-0218-1 PubMedCrossRefGoogle Scholar
  6. He GM, Sun CQ, Fu YC, Fu Q, Zhao KJ, Wang CL et al (2004) Pyramiding of senescence-inhibition IPT gene and Xa23 for resistance to bacterial blight in rice (Oryza sativa L.). Acta Genetica Sin 31(8):836–841Google Scholar
  7. Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E et al (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed 3:105–113. doi: 10.1023/A:1009683603862 CrossRefGoogle Scholar
  8. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G et al (2003) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95(3):313–320. doi: 10.1007/s001220050565 CrossRefGoogle Scholar
  9. Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK et al (2004) Combining bacterial blight resistance and basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed 13(4):377–387. doi: 10.1023/B:MOLB.0000034093.63593.4c CrossRefGoogle Scholar
  10. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S et al (2003) QTL× environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108(1):141–153. doi: 10.1007/s00122-003-1401-2 PubMedCrossRefGoogle Scholar
  11. Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195. doi: 10.1534/genetics.104.034165 PubMedCrossRefGoogle Scholar
  12. Lin HX, Min SK, Xiong ZM, Qian HR, Zhuang JY, Lu J et al (1995) RFLP mapping of QTLs for grain shape traits in indica rice (Oryza sativa L. subsp. indica). Scientia Agric Sin 28:1–7Google Scholar
  13. Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM et al (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927. doi: 10.1007/BF00224031 CrossRefGoogle Scholar
  14. Liu QQ, Li QF, Cai XL, Wang HM, Tang SZ, Yu HX et al (2006) Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Sci 46:2354–2360. doi: 10.2135/cropsci2006.03.0180 CrossRefGoogle Scholar
  15. Mei HW, Xu JL, Li ZK, Yu XQ, Guo LB, Wang YP et al (2006) QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet 112:648–656. doi: 10.1007/s00122-005-0167-0 PubMedCrossRefGoogle Scholar
  16. Miyata M, Yamamoto T, Komori T, Nitta N (2007) Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet 114(3):539–548. doi: 10.1007/s00122-006-0454-4 PubMedCrossRefGoogle Scholar
  17. Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC, Septiningsih EM et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115(6):767–776. doi: 10.1007/s00122-007-0607-0 PubMedCrossRefGoogle Scholar
  18. Redona ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957–963. doi: 10.1007/s001220050826 CrossRefGoogle Scholar
  19. Rogers SO, Bendch AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol Man 6:1–10Google Scholar
  20. Sharma PN, Torii A, Takumi S, Mori N, Nakamura C (2004) Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stål) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140(1):61–69. doi: 10.1111/j.1601-5223.2004.01726.x PubMedCrossRefGoogle Scholar
  21. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. doi: 10.1038/ng2014 PubMedCrossRefGoogle Scholar
  22. Tan CX, Ji XM, Yang Y, Pan XY, Zuo SM, Zhang YF, Zou JH, Chen ZX, Zhu LH, Pan XB (2005) Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Acta Genetica Sinica 32(4):399–405PubMedGoogle Scholar
  23. Tanksley SD, Young ND, Paterson AH, Bonierble MW (1989) RFLP mapping in plant breeding: new tools for old sciences. Biotechnology 7:257–264. doi: 10.1038/nbt0389-257 CrossRefGoogle Scholar
  24. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493. doi: 10.1007/s00122-003-1270-8 PubMedCrossRefGoogle Scholar
  25. Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK et al (2005) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580. doi: 10.1007/s00122-005-0165-2 PubMedCrossRefGoogle Scholar
  26. Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK et al (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113:619–629. doi: 10.1007/s00122-006-0326-y PubMedCrossRefGoogle Scholar
  27. Wang YH, Liu SJ, Ji SL, Zhang WW, Wang CM, Jiang L et al (2005) Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice. Cell Res 15(8):622–630. doi: 10.1038/sj.cr.7290332 PubMedCrossRefGoogle Scholar
  28. Xiao JH, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li JM et al (1996) Genes from wild rice improve yield. Nature 384:223–224. doi: 10.1038/384223a0 CrossRefGoogle Scholar
  29. Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG et al (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113(5):885–894. doi: 10.1007/s00122-006-0348-5 PubMedCrossRefGoogle Scholar
  30. Yamagishi M, Takeuchi Y, Kono I, Yano M (2002) QTL analysis for panicle characteristics in temperate japonica rice. Euphytica 128:219–224. doi: 10.1023/A:1020893731249 CrossRefGoogle Scholar
  31. Yan CJ, Liang GH, Chen F, Li X, Yi CD, Tian S et al (2003) Mapping quantitative trait loci associated with rice grain shape based on an Indica/Japonica backcross population. Acta Genetica Sin 30(8):711–716Google Scholar
  32. Yan CJ, Tian S, Zhang ZQ, Han YP, Chen F, Li X et al (2007a) The source of genes related to rice grain starch synthesis among cultivated varieties and its contribution to quality. Agric Sci China 6(2):129–136. doi: 10.1016/S1671-2927(07)60026-1 Google Scholar
  33. Yan CJ, Zhou JH, Yan S, Chen F, Yeboah M, Tang SZ et al (2007b) Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115(8):1093–1100. doi: 10.1007/s00122-007-0635-9 PubMedCrossRefGoogle Scholar
  34. Yi G, Lee SK, Hong YK, Cho YC, Nam MH, Kim SC et al (2004) Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet 109(5):978–985. doi: 10.1007/s00122-004-1707-8 PubMedCrossRefGoogle Scholar
  35. Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP et al (2006) Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet 112:1052–1062. doi: 10.1007/s00122-006-0207-4 PubMedCrossRefGoogle Scholar
  36. Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106(2):326–331PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Chang-Jie Yan
    • 1
  • Song Yan
    • 1
  • Ya-Chun Yang
    • 1
  • Xiu-Hong Zeng
    • 1
  • Yu-Wei Fang
    • 1
  • Sheng-Yuan Zeng
    • 1
  • Chun-Yan Tian
    • 1
  • Ya-Wei Sun
    • 1
  • Shu-Zhu Tang
    • 1
  • Ming-Hong Gu
    • 1
  1. 1.The Key Laboratory of Plant Functional Genomics, Ministry of Education of China, Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityJiangsuPeople’s Republic of China

Personalised recommendations