, Volume 170, Issue 1–2, pp 203–213 | Cite as

Identification of molecular markers for the flower type in the ornamental crop Calluna vulgaris

  • T. Borchert
  • A. HoheEmail author


The establishment of a marker-assisted selection system for the economically important ‘bud-flowering’ phenotype in the ornamental crop Calluna vulgaris is of great interest to practical breeding companies, as it would allow selection at the juvenile stage. Segregation analyzes revealed a monogenic recessive inheritance of the bud flowering trait. Since in C. vulgaris only sparse molecular data are available, the search for molecular markers in a segregating backcross progeny was accomplished using PCR techniques based on random primers. Two candidate RAPD markers in coupling of the trait of interest were identified. Results on their applicability in different populations and independent varieties are presented. Their transformation capability to sequence characterized amplified region and single strand conformation polymorphism markers are described and discussed in the context of marker-assisted selection strategies in breeding of ornamental crops.


Ericaceae Bulked segregant analysis Marker-assisted selection ISSR RAPD PCR-SSCP 



Amplified fragment length polymorphism


Basic local alignment search tool


Bulked segregant analysis


Cleaved amplified polymorphic site


Degree of freedom


Essentially derived variety


Inter simple sequence repeat


Marker-assisted selection


Open reading frame


Polyacrylamide gel electrophoresis


Randomly amplified polymorphic DNA


Restriction fragment length polymorphism


Sequence characterized amplified region


Single strand conformational polymorphism



This study was carried out jointly by the IGZ and the participating company Heidepflanzen Peter de Winkel (Goch) within the BMWi-funded project (KP0172401BN5A). The authors expressly thank the company owner for his support during the project, Katja Krueger and Anke Mueller (IGZ) for their excellent technical assistance in the lab as well as Monika Spiller, Anja Biber and Marcus Linde (Leibniz-University of Hannover) for cloning and sequencing, and their supplementary academic support.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  2. Bagley MJ, Anderson SL, May B (2001) Choice of methodology for assessing genetic impacts of environmental stressors: polymorphism and reproducibility of RAPD and AFLP fingerprints. Ecotoxicology 10:239–244. doi: 10.1023/A:1016625612603 PubMedCrossRefGoogle Scholar
  3. Borchert T, Krueger J, Hohe A (2008) Implementation of a model for identifying essentially derived varieties in vegetatively propagated Calluna vulgaris varieties. BMC Genet 9:56. doi: 10.1186/1471-2156-9-56 PubMedCrossRefGoogle Scholar
  4. Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97:960–967. doi: 10.1007/s001220050977 CrossRefGoogle Scholar
  5. Byrne DH (2007) Molecular marker use in perennial plant breeding. Acta Hortic 751:163–167Google Scholar
  6. Corrêa RX, Costa MR, Good-God PI, Ragagnin VA, Faleiro FG, Moreira MA, de Barros EG (2000) Sequence characterized amplified regions linked to rust resistance genes in the common bean. Crop Sci 40:804–807Google Scholar
  7. Fang DQ, Federici CT, Roose ML (1997) Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40:841–849. doi: 10.1139/g97-809 PubMedCrossRefGoogle Scholar
  8. Freemont PS (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 684:174–192. doi: 10.1111/j.1749-6632.1993.tb32280.x PubMedCrossRefGoogle Scholar
  9. Garcia AAF, Benchimol LL, Barbosa AMM, Geraldi IO, Souza CL Jr, de Souza AP (2004) Comparison of RADP, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27(4):579–588. doi: 10.1590/S1415-47572004000400019 CrossRefGoogle Scholar
  10. Hauser MT, Adhami F, Dorner M, Fuchs E, Glossl J (1998) Generation of co-dominant PCR-based markers by duplex analysis on high resolution gels. Plant J 16:117–125. doi: 10.1046/j.1365-313x.1998.00271.x PubMedCrossRefGoogle Scholar
  11. Heckenberger M, van der Voort JR, Melchinger A, Peleman J, Bohn M (2003) Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: II. Genetic and technical sources of variation in AFLP data and comparison with SSR data. Mol Breed 12:97–106. doi: 10.1023/A:1026040007166 CrossRefGoogle Scholar
  12. Hernández P, Dorado G, Ramírez MC, Laurie DA, Snape JW, Martín A (2003) Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding. Hereditas 138:54–58. doi: 10.1034/j.1601-5223.2003.01617.x PubMedCrossRefGoogle Scholar
  13. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The Defective in Anther Dehiscence1 gene encodes a novel Phospholipase A1 catalyzing the initial step of jasmonic acid synthesis, which synchronizes pollen maturation, anther dehiscence and flower opening in Arabidopsis. Plant Cell 13:2191–2209PubMedCrossRefGoogle Scholar
  14. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Vandewiel C et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390. doi: 10.1023/A:1009612517139 CrossRefGoogle Scholar
  15. Kobayashi N, Horikoshi T, Katsuyama H, Handa T, Takayanagi K (1998) A simple and efficient DNA extraction method for plants, especially woody plants. Plant Tissue Cult Biotechnol 4:76–80Google Scholar
  16. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832. doi: 10.1073/pnas.88.21.9828 PubMedCrossRefGoogle Scholar
  17. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proc Natl Acad Sci USA 86:2766–2770. doi: 10.1073/pnas.86.8.2766 PubMedCrossRefGoogle Scholar
  18. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993. doi: 10.1007/BF00215038 CrossRefGoogle Scholar
  19. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238. doi: 10.1007/BF00564200 CrossRefGoogle Scholar
  20. Rout GR, Mohapatra A (2006) Use of molecular markers in ornamental plants: a critical reappraisal. Eur J Hortic Sci 71(2):53–68Google Scholar
  21. Rugienius R, Siksnianas T, Stanys V, Gelvonauskiene D, Bendokas V (2006) Use of RAPD and SCAR markers for identification of strawberry genotypes carrying red stele (Phytophtora fragariae) resistance gene Rpf1. Agron Res 4:335–339Google Scholar
  22. Scheef EA, Casler MD, Jung G (2003) Development of species-specific SCAR markers in bentgrass. Crop Sci 43:345–349Google Scholar
  23. Scovel G, Ben-Meir H, Ovadis M, Itzhaki H, Vainstein A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96(1):117–122. doi: 10.1007/s001220050717 CrossRefGoogle Scholar
  24. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078. doi: 10.1007/s001220051169 CrossRefGoogle Scholar
  25. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104PubMedGoogle Scholar
  26. Sunnucks P, Wilson ACC, Beheregaray LB, Zenger K, French J, Taylor AC (2000) SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710. doi: 10.1046/j.1365-294x.2000.01084.x PubMedCrossRefGoogle Scholar
  27. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. doi: 10.1093/nar/gkm306 PubMedCrossRefGoogle Scholar
  28. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218. doi: 10.1093/nar/18.24.7213 PubMedCrossRefGoogle Scholar
  29. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi: 10.1093/nar/18.22.6531 PubMedCrossRefGoogle Scholar
  30. Wolfe AD, Xiang QY, Kephart SR (1998) Assessing hybridizsation in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeats (ISSR) bands. Mol Ecol 7:1107–1125. doi: 10.1046/j.1365-294x.1998.00425.x PubMedCrossRefGoogle Scholar
  31. Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655CrossRefGoogle Scholar
  32. Zhang Y, Stommel JR (2001) Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci 41:1602–1608Google Scholar
  33. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183. doi: 10.1006/geno.1994.1151 PubMedCrossRefGoogle Scholar
  34. ZMP (2007) Zentrale Markt- und Preisberichtsstelle für Erzeugnisse der Land-, Forst- und ErnährungswirtschaftGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Plant PropagationLeibniz-Institute of Vegetable and Ornamental Crops (IGZ)ErfurtGermany

Personalised recommendations