Euphytica

, 170:155 | Cite as

Genetics of dietary fibre in bread wheat

  • G. Charmet
  • U. Masood-Quraishi
  • C. Ravel
  • I. Romeuf
  • F. Balfourier
  • M. R. Perretant
  • J. L. Joseph
  • M. Rakszegi
  • F. Guillon
  • P. E. Sado
  • Z. Bedo
  • L. Saulnier
Article

Abstract

Arabinoxylans (AX) are major components of cell walls in wheat endosperm. The water-extractable part, WEAX, is considered as dietary fibres with health promoting effects. AX exhibit large natural variations in their amount but few studies have been carried out on the genetics of WEAX content and structure in bread wheat. We first carried out a “forward” quantitative genetic approach, using two recombinant populations derived from crosses between WEAX-high and WEAX-low parents and the viscosity of flour extract (WEAX-viscosity) as a predictor of WEAX content. This allowed us to identify two QTL regions, one of them, found on chromosome 6B in both populations, having a major effect with as much as 59% of the phenotypic variation explained by a single QTL. Then, we focused on key enzymes involved in the biosynthetic pathway of arabinoxylans. Out of 34 homoeologous candidate genes studied by sequencing a set of 46 lines, representing a worldwide diversity179 show no polymorphism. In the 16 polymorphic candidate genes, 80 SNP (in 15 genes) and 16 indels (in 4 genes) were detected. Then 27 SNP (in 13 genes) were genotyped in a larger collection of 156 lines (Healthgrain diversity screen). Eight associations were significant at an indicative 5% threshold, but only one, between COMT (Caffeic acid O methyltransferase) on chromosome 7A and A/X in WEAX was significant at a 1% level. The usefulness of these approaches and preliminary results for breeding is discussed.

Keywords

Arabino-xylan QTL Candidate gene Association genetics 

References

  1. Adam A, Lopez HW, Leuillet M, Demigne C, Remesy C (2003) Whole wheat flour exerts cholesterol-lowering in rats in its native form and after use in bread-making. Food Chem 80:337–344CrossRefGoogle Scholar
  2. Andersson R, Westerlund E, Aman P (1994) Natural variations in the contents of structural elements of water-extractable nonstarch polysaccharides in white flour. J Cereal Sci 19:77–82CrossRefGoogle Scholar
  3. Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926PubMedCrossRefGoogle Scholar
  4. Boros D, Lukaszewski AJ, Aniol A, Ochodzki P (2002) Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. Euphytica 128:1–8CrossRefGoogle Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  6. Carré B, Gomez J, Melcion JP, Giboulot P (1997) La viscosité des aliments destinés à l’aviculture. Utilisation pour prédire la consommation et l’excrétion d’eau. INRA Prod Anim 7(5):369–379Google Scholar
  7. Cleemput G, Roels SP, Vanoort M, Grobet PJ, Delcour JA (1993) Heterogeneity in the structure of water-soluble arabinoxylans in European wheat flours of variable bread-making quality. Cereal Chem 70:324–329Google Scholar
  8. Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243CrossRefGoogle Scholar
  9. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  10. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913PubMedCrossRefGoogle Scholar
  11. Dornez E, Gebruers K, Joye IJ, De Ketelaere B, Lenartz J, Massaux C, Bodson B, Delcour JA, Courtin CM (2008) Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 47:180–189CrossRefGoogle Scholar
  12. Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Heredity 87:295–307Google Scholar
  13. Fincher GB, Stone BA (1986) Cell walls and their components. Cereal grain technology, vol 8. American Association of Cereal Chemists, St Paul, pp 207–295Google Scholar
  14. Gebruers K, Dornez E, Boros D, Fraś A, Dynkowska W, Bedo Z, Rakszegi M, Delcour JA, Courtin C (2008) Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9740–9749PubMedCrossRefGoogle Scholar
  15. Groos C, Bervas E, Chanliaud E, Charmet G (2007) Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population. Theor Appl Genet 115:313–323PubMedCrossRefGoogle Scholar
  16. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48CrossRefGoogle Scholar
  17. Korol A, Ronin Y, Kirzhner V (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140:1137–1147PubMedGoogle Scholar
  18. Kuroyama H, Tsumuraya Y (2001) A xylosyltransferase that synthesizes beta-(1 - > 4)-xylans in wheat (Triticum aestivum L.) seedlings. Planta 213:231–240PubMedCrossRefGoogle Scholar
  19. Lam TBT, Iiyama K, Stone BA (1996) Caffeic acid: O-methyltransferases and the biosynthesis of ferulic acid in primary cell walls of wheat seedlings. Phytochemistry 41:1507–1510CrossRefGoogle Scholar
  20. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet 11:241–247PubMedCrossRefGoogle Scholar
  21. Martinant JP, Cadalen T, Billot A, Chartier S, Lerouy P, Bernard M, Saulnier L, Branlard G (1998) Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor Appl Genet 97:1069–1075CrossRefGoogle Scholar
  22. Martinant JP, Billot A, Bouguennec A, Charmet G, Saulnier L, Branlard G (1999) Genetic and environmental variations in water-extractable arabinoxylan content and flour extract viscosity. J Cereal Sci 30:45–48CrossRefGoogle Scholar
  23. Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53PubMedCrossRefGoogle Scholar
  24. Mohanna C, Carre B, Nys Y (1999) Incidence of dietary viscosity on growth performance and zinc and manganese bioavailability in broilers. Anim Feed Sci Technol 77:255–266CrossRefGoogle Scholar
  25. Nicot N, Chiquet V, Gandon B, Amilhat L, Le Geai F, Leroy F, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805PubMedCrossRefGoogle Scholar
  26. Ordaz-Ortiz JJ, Devaux MF, Saulnier L (2005) Classification of wheat varieties based on structural features of arabinoxylans as revealed by endoxylanase treatment of flour and grain. J Agric Food Chem 53:8349–8356PubMedCrossRefGoogle Scholar
  27. Porchia AC, Scheller HV (2000) Arabinoxylan biosynthesis: Identification and partial characterization of beta-1, 4-xylosyltransferase from wheat. Physiol Plant 110:350–356CrossRefGoogle Scholar
  28. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  29. Rafalski JA (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  30. Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G (2006) Single nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139PubMedCrossRefGoogle Scholar
  31. Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trend and breeding programmes. Theor Appl Genet 108:920–930PubMedCrossRefGoogle Scholar
  32. Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–280CrossRefGoogle Scholar
  33. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant, genetics. Olivier and Boyd, Edinburgh, pp 29–45Google Scholar
  34. Selanere ML, Anderson R (2002) Cell wall composition of 1B/1R translocation wheat grains. J Sci Food Agric 82:538–545CrossRefGoogle Scholar
  35. Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Method Mol Biol 132:115–130Google Scholar
  36. Ward J, Poutanenen K, Gebruers K, Piironen V, Lampi AM, Nystrröm L, Anderson AM, Aman P, Boros D, Rakszegi M, Bedo Z, Shewry P (2008) The HEALTHGRAIN cereal diversity screen: concept, result and prospect. J Agric Food Chem 56:9699–9709PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • G. Charmet
    • 1
  • U. Masood-Quraishi
    • 1
  • C. Ravel
    • 1
  • I. Romeuf
    • 1
  • F. Balfourier
    • 1
  • M. R. Perretant
    • 2
  • J. L. Joseph
    • 2
  • M. Rakszegi
    • 4
  • F. Guillon
    • 3
  • P. E. Sado
    • 3
  • Z. Bedo
    • 4
  • L. Saulnier
    • 3
  1. 1.UMR1095 GDECINRA-University B PascalClermont-FerrandFrance
  2. 2.INRA 1095 GDECINRA-University B PascalClermont-FerrandFrance
  3. 3.INRA UMR BIANantes cedex 3France
  4. 4.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations