Euphytica

, Volume 166, Issue 1, pp 47–59 | Cite as

Biotech crops: technologies, achievements and prospects

Article

Abstract

During the past decade the development and adoption of transgenic technology has progressed rapidly. In 2007, biotech crops were grown by 12 million farmers in 23 countries covering 114.3 million hectares. This progress can be attributed to developments in molecular genetics, plant transformation and regeneration techniques and a better understanding of the underlying processes involved in DNA recombination. While almost every significant crop species has been successfully transformed, in many species the development of rapid, highly efficient, and routine transformation systems is still in progress. The commonly-used methods along with some promising alternative methods of plant transformation are described here. Achievements and future prospect in the areas of developing biotic and abiotic stress-tolerant crop varieties and progress in incorporating nutritional and other useful qualities into plants are also discussed in this paper.

Keywords

Alternative transformation methods Biotechnology Cisgenic approach Gene targeting Marker-free methods Plant transformation 

References

  1. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U et al (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748. doi: 10.1105/tpc.104.026070 PubMedGoogle Scholar
  2. Aziz N, Machray GC (2003) Efficient male germ line transformation for transgenic tobacco production without selection. Plant Mol Biol 51:203–211. doi: 10.1023/A:1021199718356 PubMedGoogle Scholar
  3. Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220. doi: 10.1016/S0958-1669(97)80105-X PubMedGoogle Scholar
  4. Berg P (1991) Reverse genetics: its origins and prospects. Biotechnology 9:342–344. doi: 10.1038/nbt0491-342 PubMedGoogle Scholar
  5. Breitler J-C, Meynard D, Boxtel JV, Royer M, Bonnot F, Cambillau L et al (2004) A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287. doi: 10.1023/B:TRAG.0000034626.22918.0a PubMedGoogle Scholar
  6. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633. doi: 10.1038/nature03309 PubMedGoogle Scholar
  7. Buning TD, van Bueren ETL, Haring MA, de Vriend HC, Struik PC (2006) ‘Cisgenic’ as a product designation. Nat Biotechnol 24(11):1329–1331. doi: 10.1038/nbt1106-1329b Google Scholar
  8. Burke JJ, Oliver MJ, Velten JP (1999) Pollen-based transformation system using solid medium. US19970008927[US5929300]. 27-7-1999. The United States of America as represented by the Secretary of Agriculture, Washington, DCGoogle Scholar
  9. Camp WV (2005) Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 16:147–153. doi: 10.1016/j.copbio.2005.03.002 PubMedGoogle Scholar
  10. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292. doi: 10.1126/science.2660260 PubMedGoogle Scholar
  11. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29. doi: 10.1104/pp.108.117887 PubMedGoogle Scholar
  12. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in Eubacteria. J Bacteriol 179:3085–3094PubMedGoogle Scholar
  13. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x PubMedGoogle Scholar
  14. Cluster PD, O’Dell M, Flavell RB (1996) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203. doi: 10.1007/BF00041406 PubMedGoogle Scholar
  15. Codex Alimentarius Commission (2003) Alinorm 03/34: Joint FAO/WHO food standard programme, Codex Alimentarius Commission, twenty-fifth session, Rome, 30 June–5 July, 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants and Appendix IV, Annex on the assessment of possible allergenicity, pp 47–60Google Scholar
  16. Cohen JI, Quemada H, Frederick R (2003) Food safety and GM crops: implications for developing-country research. In: Food safety in food security and food trade. Focus 10, Brief 16 of 17. International Food Policy Research Institute, Washington, DC, USA. www.ifpri.org
  17. Comai L, Facciotti D, Niatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744. doi: 10.1038/317741a0 Google Scholar
  18. Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap J-P, Jacobs JME (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154:341–353Google Scholar
  19. Curtis IS (2005) Production of transgenic crops by the floral-dip method. In: Peña L (ed) Transgenic plants: methods and protocols. Methods in Molecular Biology, Vol 286. Humana Press Inc., Totowa, NJ, pp 103–109Google Scholar
  20. Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496. doi: 10.1007/s002990050430 Google Scholar
  21. Daniell H, Datta R, Varma S, Gray S, Lee S-B (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348. doi: 10.1038/nbt0498-345 PubMedGoogle Scholar
  22. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91. doi: 10.1016/S1360-1385(01)02193-8 PubMedGoogle Scholar
  23. Day A, Kode V, Madesis P, Iamtham S (2005) Simple and efficient removal of marker genes from plastids by homologous recombination. Methods Mol Biol 286:255–269PubMedGoogle Scholar
  24. De Block M, Debrouwer D (1991) Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263. doi: 10.1007/BF02190610 Google Scholar
  25. De Cosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the BtCry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74. doi: 10.1038/83559 PubMedGoogle Scholar
  26. de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E et al (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi: 10.1038/nbt801 PubMedGoogle Scholar
  27. Ebinuma H, Sugita K, Endo S, Matsunaga E, Yamada K (2005) Elimination of marker genes from transgenic plants using MAT vector systems. Methods Mol Biol 286:237–253PubMedGoogle Scholar
  28. Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161. doi: 10.1016/j.copbio.2004.01.008 PubMedGoogle Scholar
  29. Gad AE, Rosenberg N, Altman A (1990) Liposome-mediated gene delivery into plant cells. Physiol Plant 79:177–183. doi: 10.1111/j.1399-3054.1990.tb05883.x Google Scholar
  30. Gilbertson L (2003) Cre-lox recombination: cre-active tools for plant biotechnology. Trends Biotechnol 21:550–555. doi: 10.1016/j.tibtech.2003.09.011 PubMedGoogle Scholar
  31. Goldsbrough AP, Lastrella CN, Yoder J (1993) Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286–1292Google Scholar
  32. Goodman RE, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL et al (2008) Allergenicity assessment of genetically modified crops—what makes sense? Nat Biotechnol 26(1):73–81. doi: 10.1038/nbt1343 PubMedGoogle Scholar
  33. Halfter U, Morris P-C, Willmitzer L (1992) Gene targeting in Arabidopsis thaliana. Mol Gen Genet 231:186–193PubMedGoogle Scholar
  34. Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193. doi: 10.1016/S0958-1669(03)00035-1 PubMedGoogle Scholar
  35. Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677. doi: 10.1046/j.1365-313x.2001.01183.x PubMedGoogle Scholar
  36. Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integration of T-strands generated in planta. Proc Natl Acad Sci USA 93:14978–14983. doi: 10.1073/pnas.93.25.14978 PubMedGoogle Scholar
  37. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231. doi: 10.1016/S1360-1385(99)01412-0 PubMedGoogle Scholar
  38. Hansen G, Shillito RD, Chilton M-D (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94:11726–11730. doi: 10.1073/pnas.94.21.11726 PubMedGoogle Scholar
  39. Harwood WA, Chen D-F, Creissen GP (1996) Transformation of pollen and microspores. In: Mohan Jain S, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publishers, Dordrecht, pp 53–71Google Scholar
  40. Heberle-Bors E, Stöger E, Touraev A, Zarsky V, Vicente O (1996) In vitro pollen cultures: progress and perspectives. In: Mohapatra SS, Knox RB (eds) Pollen biotechnology. Gene expression and allergen characterization. Chapman and Hall, New York, pp 85–109Google Scholar
  41. Herman L, Jacobs A, Van Montagu M, Depicker A (1990) Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224:248–256. doi: 10.1007/BF00271558 PubMedGoogle Scholar
  42. Hess D (1987) Pollen based techniques in genetic manipulation. Int Rev Cytol 107:169–190Google Scholar
  43. Hess D, Dressler K (1989) Tumor transformation of Petunia hybrida via pollen co-cultured with Agrobacterium tumefaciens. Bot Acta 102:202–207Google Scholar
  44. Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51–53. doi: 10.1016/S1360-1385(03)00004-9 PubMedGoogle Scholar
  45. Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132–138. doi: 10.1016/j.copbio.2004.02.005 PubMedGoogle Scholar
  46. James C (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 37. ISAAA, IthacaGoogle Scholar
  47. Joshi L, Lopez LC (2005) Bioprospecting in plants for engineered proteins. Curr Opin Plant Biol 8:223–226. doi: 10.1016/j.pbi.2005.01.003 PubMedGoogle Scholar
  48. Kikkert JR (1993) The Biolistic® PDS-1000/He device. Plant Cell Tissue Organ Cult 33:221–226. doi: 10.1007/BF02319005 Google Scholar
  49. Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141. doi: 10.1016/j.copbio.2005.02.006 PubMedGoogle Scholar
  50. Kumar S, Allen GC, Thompson WF (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11(4):159–161. doi: 10.1016/j.tplants.2006.02.002 PubMedGoogle Scholar
  51. Langridge P, Brettschneider R, Lazzeri P, Lörz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2:631–638. doi: 10.1111/j.1365-313X.1992.00631.x Google Scholar
  52. Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24(3):109–114. doi: 10.1016/j.tibtech.2006.01.006 PubMedGoogle Scholar
  53. Liu F, Cao MQ, Yao L, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192Google Scholar
  54. Luo H, Keenan RJ (2002) Application of FLP/FRT site-specific DNA recombination system in plants. Genet Eng (NY) 24:1–16Google Scholar
  55. Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22:63–70. doi: 10.1007/BF02773350 Google Scholar
  56. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K et al (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704PubMedGoogle Scholar
  57. McCabe D, Christou P (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology). Plant Cell Tissue Organ Cult 33:227–236. doi: 10.1007/BF02319006 Google Scholar
  58. Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152. doi: 10.1016/S1369-5266(99)00055-2 PubMedGoogle Scholar
  59. Mengiste T, Paszkowski J (1999) Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 380:749–758. doi: 10.1515/BC.1999.095 PubMedGoogle Scholar
  60. Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396. doi: 10.1023/A:1016390621482 PubMedGoogle Scholar
  61. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977. doi: 10.1104/pp.108.118232 PubMedGoogle Scholar
  62. Morell MK, Myers AM (2005) Towards the rational design of cereal starches. Curr Opin Plant Biol 8:204–210. doi: 10.1016/j.pbi.2005.01.009 PubMedGoogle Scholar
  63. Nielsen KM (2003) Transgenic organisms—time for conceptual diversification? Nat Biotechnol 21:227–228. doi: 10.1038/nbt0303-227 PubMedGoogle Scholar
  64. Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24(11):1420–1428. doi: 10.1038/nbt1255 PubMedGoogle Scholar
  65. Oard J (1993) Development of an airgun device for particle bombardment. Plant Cell Tissue Organ Cult 33:247–250. doi: 10.1007/BF02319008 Google Scholar
  66. Paine AJ, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G et al (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487. doi: 10.1038/nbt1082 PubMedGoogle Scholar
  67. Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021–4026PubMedGoogle Scholar
  68. Powell AP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743. doi: 10.1126/science.3457472 Google Scholar
  69. Puchta H (2003) Marker-free transgenic plants. Plant Cell Tissue Organ Cult 74:123–134. doi: 10.1023/A:1023934807184 Google Scholar
  70. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J et al (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745. doi: 10.1038/nbt972 PubMedGoogle Scholar
  71. Risseeuw E, Franke-van-Dijk MEI, Hooykaas PJJ (1997) Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J 11:717–728. doi: 10.1046/j.1365-313X.1997.11040717.x PubMedGoogle Scholar
  72. Ritzenthaler C (2005) Resistance to plant viruses: old issue, new answers? Curr Opin Biotechnol 16:118–122. doi: 10.1016/j.copbio.2005.02.009 PubMedGoogle Scholar
  73. Roa-Rodriguez C, Nottenburg C (2003) Agrobacterium-mediated transformation of plants. CAMBIA technology landscape paper (http://www.bios.net/Agrobacterium)
  74. Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9(9):457–464. doi: 10.1016/j.tplants.2004.07.001 PubMedGoogle Scholar
  75. Rommens C, Kishore GM (2000) Exploiting full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125. doi: 10.1016/S0958-1669(00)00083-5 PubMedGoogle Scholar
  76. Rommens CM, Humara JM, Ye JS, Yan H, Richael C, Zhang L et al (2004) Crop improvement through modification of the plant’s own DNA. Plant Physiol 135:421–431. doi: 10.1104/pp.104.040949 PubMedGoogle Scholar
  77. Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K et al (2005) Plant-derived transfer DNAs. Plant Physiol 139:1338–1349. doi: 10.1104/pp.105.068692 PubMedGoogle Scholar
  78. Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12(9):397–403. doi: 10.1016/j.tplants.2007.08.001 PubMedGoogle Scholar
  79. Rothstein R (1991) Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301. doi: 10.1016/0076-6879(91)94022-5 PubMedGoogle Scholar
  80. Sanan-Mishra N, Pham HP, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514. doi: 10.1073/pnas.0406485102 PubMedGoogle Scholar
  81. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37. doi: 10.1080/02726358708904533 Google Scholar
  82. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509. doi: 10.1016/0076-6879(93)17086-K PubMedGoogle Scholar
  83. Saunders JA, Matthews BF (1995) Pollen electrotransformation in tobacco. In: Nickoloff JA (ed) Methods in molecular biology. Humana Press, Totowa, pp 81–88Google Scholar
  84. Sautter C, Waldner H, Neuhaus-Url G, Galli A, Neuhaus G, Potrykus I (1991) Micro-targeting: high efficiency gene transfer using a novel approach for the acceleration of micro-projectiles. Biotechnology 9:1080–1085. doi: 10.1038/nbt1991-1080 PubMedGoogle Scholar
  85. Schaefer DG, Zrÿd J-P (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206. doi: 10.1046/j.1365-313X.1997.11061195.x PubMedGoogle Scholar
  86. Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196PubMedGoogle Scholar
  87. Schouten HJ, Krens FA, Jacobsen E (2006a) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753. doi: 10.1038/nbt0706-753 PubMedGoogle Scholar
  88. Schouten HJ, Krens FA, Jacobsen E (2006b) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7(8):750–753. doi: 10.1038/sj.embor.7400769 PubMedGoogle Scholar
  89. Schubert D, Willims D (2006) ‘Cisgenic’ as a product designation. Nat Biotechnol 24(11):1327–1329. doi: 10.1038/nbt1106-1327 PubMedGoogle Scholar
  90. Scott SE, Wilkinson MJ (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol 17:390–392. doi: 10.1038/8623 PubMedGoogle Scholar
  91. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi: 10.1016/S0958-1669(03)00030-2 PubMedGoogle Scholar
  92. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395. doi: 10.1016/S0168-9452(02)00133-4 Google Scholar
  93. Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710PubMedGoogle Scholar
  94. Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatment. In: Vasil I (ed) Molecular improvement of cereal crop. Kluwer, Dordrecht, pp 9–20Google Scholar
  95. Smith RH, Hood E (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309Google Scholar
  96. Smith CR, Saunders JA, van Wert S, Cheng J-P, Matthews BF (1994) Expression of GUS and CAT activities using electrotransformed pollen. Plant Sci Limerick 104:49–58. doi: 10.1016/0168-9452(94)90190-2 Google Scholar
  97. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT et al (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100(16):9128–9133. doi: 10.1073/pnas.1533501100 PubMedGoogle Scholar
  98. Southgate EM, Davey MR, Power JB, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651. doi: 10.1016/0734-9750(95)02008-X PubMedGoogle Scholar
  99. Stoger E, Ma JK-C, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:173. doi: 10.1016/j.copbio.2005.01.005 Google Scholar
  100. Stöger E, Benito Moreno RM, Ylstra B, Vicente O, Heberle-Bors E (1992) Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Transgenic Res 1:71–78. doi: 10.1007/BF02513024 Google Scholar
  101. Stokes T (2001) Gene transformation gets acupuncture. Trends Plant Sci 6:244Google Scholar
  102. Struhl K (1983) The new yeast genetics. Nature 305:391–397. doi: 10.1038/305391a0 PubMedGoogle Scholar
  103. Taylor SL (2006) Review of the development of methodology for evaluating the human allergenic potential of novel proteins. Mol Nutr Food Res 50:604–609. doi: 10.1002/mnfr.200500275 PubMedGoogle Scholar
  104. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034. doi: 10.1038/nbt737 PubMedGoogle Scholar
  105. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184. doi: 10.1016/1360-1385(96)10020-0 Google Scholar
  106. Touraev A, Stöger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–958. doi: 10.1046/j.1365-313X.1997.12040949.x Google Scholar
  107. Touraev A, Pfosser M, Heberle-Bors E (2001). The Microspore: a haploid multipurpose cell. In: Callow JA (ed) Advances in botanical research. Academic Press, New York, pp 53–109Google Scholar
  108. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA et al (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541. doi: 10.1046/j.1365-313x.2000.00757.x PubMedGoogle Scholar
  109. Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer J (1993) Development of the particle inflow gun. Plant Cell Tissue Organ Cult 33:237–246. doi: 10.1007/BF02319007 Google Scholar
  110. van der Leede-Plegt LM, van de Ven BC, Schilder M, Franken J, van Tunen AJ (1995) Development of pollen-mediated transformation for Nicotiana glutinosa. Transgenic Res 4:77–86. doi: 10.1007/BF01969410 Google Scholar
  111. Van Loon LC, Gerritsen YAM, Ritter CE (1987) Identification, purification and characterisation of pathogenesis-related proteins from virus infected Samsun NN tobacco leaves. Plant Mol Biol 9:593–609. doi: 10.1007/BF00020536 Google Scholar
  112. Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J-B et al (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659. doi: 10.1046/j.1365-313x.1998.00337.x PubMedGoogle Scholar
  113. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi: 10.1016/j.copbio.2005.02.001 PubMedGoogle Scholar
  114. Walden R, Wingender R (1995) Gene-transfer and plant regeneration-techniques. Trends Biotechnol 13:324–331. doi: 10.1016/S0167-7799(00)88976-3 Google Scholar
  115. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi: 10.1007/s00425-003-1105-5 PubMedGoogle Scholar
  116. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC et al (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094PubMedGoogle Scholar
  117. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305. doi: 10.1126/science.287.5451.303 PubMedGoogle Scholar
  118. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621. doi: 10.1104/pp.104.040295 PubMedGoogle Scholar
  119. Zhu T, Peterson DJ, Tagliani L, St Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773. doi: 10.1073/pnas.96.15.8768
  120. Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28. doi: 10.1046/j.1365-313x.2000.00808.x PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Biotechnology DivisionBangladesh Agricultural Research InstituteJoydebpur, GazipurBangladesh
  2. 2.Scottish Agricultural Science AgencyEdinburghUK

Personalised recommendations