Euphytica

, 166:15

Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]

  • Sung-Taeg Kang
  • Myounghai Kwak
  • Hyeun-Kyeung Kim
  • Myoung-Gun Choung
  • Won-Young Han
  • In-Youl Baek
  • Moon Young Kim
  • Kyujung Van
  • Suk-Ha Lee
Article

Abstract

Pod dehiscence (PD) prior to harvest results in serious yield loss in soybean. Two linkage maps with simple sequence repeat (SSR) markers were independently constructed using recombinant inbred lines (RILs) developed from Keunolkong (pod-dehiscent) × Sinpaldalkong (pod-indehiscent) and Keunolkong × Iksan 10 (pod-indehiscent). These soybean RIL populations were used to identify quantitative trait loci (QTLs) conditioning resistance to PD. While a single major QTL on linkage group (LG) J explained 46% of phenotypic variation in PD in the Keunolkong × Sinpaldalkong population with four minor QTLs, three minor QTLs were identified in the Keunolkong × Iksan 10 population. Although these two populations share the pod dehiscent parent, no common QTL has been identified. In addition, epistatic interactions among three marker loci partially explained phenotypic variation in PD in both populations. The result of this study indicates that different breeding strategies will be required for PD depending on genetic background.

Keywords

Pod dehiscence QTL Epistatic interaction Simple sequence repeat Genetic linkage map Recombinant inbred line 

References

  1. Bailey MA, Mian MAR, Carter TE Jr, Ashley DA, Boerma HR (1997) Pod dehiscence of soybean: identification of quantitative trait loci. J Hered 88:152–154Google Scholar
  2. Cai CM, Van K, Lee S-H (2007) Gene duplications revealed during the process of SNP discovery in soybean [Glycine max (L.) Merr.]. J Crop Sci Biotechnol 10:237–242Google Scholar
  3. Caviness CE (1969) Heritability of pod dehiscence and its association with some agronomic characters in soybean. Crop Sci 9:207–209Google Scholar
  4. Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon M-S, Hwang E-Y, Yi S-I, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696PubMedCrossRefGoogle Scholar
  5. Christiansen LC, Dal Degan F, Ulvskov P, Borhardt B (2002) Examination of the dehiscence zone in soybean pods and isolation of a dehiscence-related endopolygalacturonase gene. Plant Cell Environ 25:475–490CrossRefGoogle Scholar
  6. Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ, Cregan PB, Shoemaker RC, Specht JE (2003) The seed protein, oil and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067Google Scholar
  7. Condibido VC, La Valee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582Google Scholar
  8. Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490Google Scholar
  9. Esau K (1997) Anatomy of seed plants. Wiley, New YorkGoogle Scholar
  10. Funatsuki H, Ishimoto M, Tsuji H, Kawaguchi K, Hajika M, Fujino K (2006) Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed 125:195–197CrossRefGoogle Scholar
  11. Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44Google Scholar
  12. Haldane JBS (1919) The combination of linkage values and the calculation of distance between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  13. Halvankat GB, Patil VP (1994) Inheritance and linkage studies in soybean. Indian J Genet Plant Breed 54:216–224Google Scholar
  14. Hancock JF (2004) Plant evolution and the origin of crop species. CAB International, WallingfordGoogle Scholar
  15. Harlan JR, de Wet JMJ, Glen Price E (1973) Comparative evolution of cereals. Evolution 27:311–325CrossRefGoogle Scholar
  16. Hong EH, Kim SD, Lee YH, Hwang YH, Moon YH, Kim HS, Park EH, Seong YG, Kim YH, Kim WH, Ryu YH, ParK RK (1992) A good quality, semi-dwarf, high density-adaptable and high yielding new soybean variety “Sinpaldalkong”. RDA J Agric Sci 34:20–25Google Scholar
  17. Hyten DL, Song Q, Zhu Y, Choi I-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impact of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671PubMedCrossRefGoogle Scholar
  18. Kang ST, Kim HK, Baek IY, Chung MG, Han WY, Shin DC, Lee S-H (2005) Genetic analysis of pod dehiscence in soybean. Korean J Crop Sci 50:281–285Google Scholar
  19. Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newsl 15:150–154Google Scholar
  20. Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045Google Scholar
  21. Konishi S, Izaw T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396PubMedCrossRefGoogle Scholar
  22. Lande R (1992) Plant breeding in the 1990s. CAB International, WallingfordGoogle Scholar
  23. Lark KG, Chase K, Adler F, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660PubMedCrossRefGoogle Scholar
  24. Lee SH, Bailey MA, Mian MAR, Carter TE Jr, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet 93:649–657CrossRefGoogle Scholar
  25. Li Z, Jakkula L, Hussey RS, Tamulonis JP, Boerma HR (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103:1167–1173CrossRefGoogle Scholar
  26. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939PubMedCrossRefGoogle Scholar
  27. Mainly KF, Olson JM (1999) Overview of QTL mapping software and introduction to Map Manager QT. Mamm Genome 10:327–334CrossRefGoogle Scholar
  28. Njiti VN, Meksem K, Iqbal MJ, Johnson JE, Kassem MA, Zobrist KF, Kilo VY, Lightfoot DA (2002) Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet 104:294–300PubMedCrossRefGoogle Scholar
  29. Orf JH, Chase K, Adler FR, Mansur LM, Lark KG (1999) Genetics of soybean agronomic trait: II. Interactions between yield quantitative trait loci in soybean. Crop Sci 39:1652–1657Google Scholar
  30. Saxe LA, Clark C, Lin SF, Lumpkin TA (1996) Mapping the pod shattering trait in soybean. Soybean Genet Newsl 23:250–253Google Scholar
  31. Schuster I, Abdelnoor RV, Marin SRR, Carvalho VP, Kiihl RAS, Silva JFV, Sediyama CS, Barros EG, Moreira MA (2001) Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theor Appl Genet 102:91–96CrossRefGoogle Scholar
  32. Shoemaker RC, Olson TC (1993) Molecular linkage map of soybean (Glycine max (L.) Merr.). Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  33. Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of soybean. Theor Appl Genet 109:122–128PubMedCrossRefGoogle Scholar
  34. Suh HS, Shin DC, Baek IY, Park CK, Kim YC, Lee JM, Lee SK (1992) A new high yielding summer soybean variety “Keunolkong”. RDA J Agric Sci 34:16–19Google Scholar
  35. Tiwari SP, Bhatnagar PS (1991) Genetics of pod shattering in soybean. Soybean Genet Newl 18:150–153Google Scholar
  36. Tsuchiya T (1987) Physiological and genetic analysis of pod shattering in soybean. Jpn Agric Res Q 21:166–175Google Scholar
  37. Tsuchiya T, Sunada K (1979) Breeding studies on pod shattering in soya bean. III. Degree of shattering in the F1 and F2. Bull Hokkaido Prefectural Agric Exp Stations 41:1–9Google Scholar
  38. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630PubMedCrossRefGoogle Scholar
  39. Whittaker JC, Thomson R, Visscher PM (1996) On the mapping of QTL by regression of phenotype on marker-type. Heredity 77:23–32CrossRefGoogle Scholar
  40. Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sung-Taeg Kang
    • 1
  • Myounghai Kwak
    • 2
  • Hyeun-Kyeung Kim
    • 3
  • Myoung-Gun Choung
    • 4
  • Won-Young Han
    • 5
  • In-Youl Baek
    • 5
  • Moon Young Kim
    • 2
  • Kyujung Van
    • 2
  • Suk-Ha Lee
    • 2
    • 6
  1. 1.National Institute of Crop ScienceSuwonSouth Korea
  2. 2.Department of Plant Science and Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
  3. 3.School of Resources and Life SciencePusan National UniversityMilyangSouth Korea
  4. 4.Department of Herbal Medicine ResourceKangwon National UniversitySamcheokSouth Korea
  5. 5.Yeongnam Agricultural Research InstituteMilyangSouth Korea
  6. 6.Plant Genomics and Breeding InstituteSeoul National UniversitySeoulSouth Korea

Personalised recommendations