, 165:197 | Cite as

Clonal variation and stability assay of chimeric Pinot Meunier (Vitis vinifera L.) and descending sports

  • Sabine H. G. Stenkamp
  • Manuel S. Becker
  • Bernd H. E. Hill
  • Rolf Blaich
  • Astrid Forneck


This project studied the genetic variation of the periclinal grape chimera Pinot Meunier, its natural occurring mutations (loss of trichomes on leaf surfaces) and the German Pinot noir clone Samtrot. Eleven Pinot Meunier clones of French, Italian and foremost German origin, Pinot Meunier mutations of differing ages and with various dispersions of hairless sectors as bud-, shoot- and complete vine mutations and six Samtrot clones were investigated with amplified fragment length polymorphisms (AFLPs) and microsatellites (SSRs). SSR-analysis proved chimerism of all Pinot Meunier clones tested and confirmed identical genotype for all hairless mutations and Samtrot clones at the analyzed loci. Clonal variation was shown by AFLP-analysis yielding a total of 670 bands out of 18 primer combinations of which 161 were polymorphic. Pinot Meunier, Samtrot and the naturally occurring hairless Pinot Meunier mutations could be significantly differentiated. Most of interclonal varying AFLP fragments (mean 1.5% per sample) originated within the groups of Samtrot or Pinot Meunier mutations, whereas intraclonal identity was highest within the Pinot Meunier clones. According to the analysis of molecular variance (AMOVA), variation among wild type and mutated Pinot Meunier leaf halves is significantly smaller than between phenotypically identical Samtrot and Pinot Meunier mutants. Average gene diversity calculated on variability of loci reduced from Samtrot (0.040 ± 0.023) towards Pinot Meunier (0.025 ± 0.013) clones.


Clonal variation Periclinal chimera Pinot Meunier Samtrot Vitis vinifera 



Amplified fragment length polymorphism


Principal coordinate analysis


Simple sequence repeats


Analysis of molecular variance


  1. Bellin D, Velasco R, Grando MS (2001) Intravarietal DNA polymorphisms in grapevine (Vitis vinifera L.). Acta Hortic 546:343–349Google Scholar
  2. Bleyer K (2001) Klonenzüchtung beim Blauen Spätburgunder. Rebe Wein 11:22–26Google Scholar
  3. Bonin A, Belleman E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and asses genotyping errors in population genetics studies. Mol Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x PubMedCrossRefGoogle Scholar
  4. Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape “green revolution” mutation. Nature 416:847–850. doi:10.1038/416847a PubMedCrossRefGoogle Scholar
  5. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of newpolymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633. doi:10.1139/g96-080 PubMedCrossRefGoogle Scholar
  6. Bowers JE, Boursiquot JM, This P, Chu K, Johansson H, Meredith C (1999) Historical genetics: the parentage of Chardonnay, Gamay and other wine grapes of northeastern France. Science 285:1562–1565. doi:10.1126/science.285.5433.1562 PubMedCrossRefGoogle Scholar
  7. Breider H (1953) Entwicklungsgeschichtlich-genetische Studien über somatische Mutationen bei der Rebe. Theor Appl Genet 23(7–8):208–222. doi:10.1007/BF00712128 Google Scholar
  8. Bundessortenamt (2000) Beschreibende Sortenliste—Reben. Deutscher Landwirtschaftsverlag GmbH, HannoverGoogle Scholar
  9. Cameron JW, Soos RK, Olson EO (1964) Chimeral basis for color in pink and red grapefruit. J Hered 55:23–28Google Scholar
  10. Chatelet P, Lacou V, Fernandez L, Sreekantan L, Lacombe T, Martinez-Zapater JM et al (2007) Characterization of Vitis vinifera L. somatic variants exhibiting abnormal flower development patterns. J Exp Bot 58:4107–4118. doi:10.1093/jxb/erm269 PubMedCrossRefGoogle Scholar
  11. Crespan M (2004) Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theor Appl Genet 108(2):231–237. doi:10.1007/s00122-003-1419-5 PubMedCrossRefGoogle Scholar
  12. Dermen H (1960) Nature of plant sports. Am Hortic Mag 39:123–173Google Scholar
  13. Forneck A (2005) Clonality—a concept for stability and variability during vegetative propagation. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany, vol 66. Springer-Verlag, BerlinCrossRefGoogle Scholar
  14. Franks T, Botta R, Thomas MR (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104(2–3):192–199. doi:10.1007/s001220100683 PubMedCrossRefGoogle Scholar
  15. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 55:582–585. doi:10.1093/biomet/55.3.582 CrossRefGoogle Scholar
  16. Gunther E (1961) Durch Chimärenbildung verursachte Aufhebung der Selbstinkompatibilität von Lycopersicum esculentum L. Mill. Ber Dtsch Bot Ges 74:333–336Google Scholar
  17. Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir M-C, Merdinoglu D (2004) Diversification within grapevine cultivars goes through chimeric states. Genome 47:579–589. doi:10.1139/g04-006 PubMedCrossRefGoogle Scholar
  18. Imazio S, Labra M, Grassi F, Winfield M, Bardini M, Scienza A (2002) Molecular tools for clone identification: the case of the grapevine cultivar ‘Traminer’. Plant Breed 121:531–535. doi:10.1046/j.1439-0523.2002.00762.x CrossRefGoogle Scholar
  19. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi:10.1038/nature06148 PubMedCrossRefGoogle Scholar
  20. Klekowski EJ (1998) Mutation rated in mangroves and other plants. Genetica 102–103:325–331. doi:10.1023/A:1017026907407 CrossRefGoogle Scholar
  21. Labra M, Imazio S, Grassi F, Rossoni M, Sala F (2004) Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breed 123:180–185. doi:10.1046/j.1439-0523.2003.00965.x CrossRefGoogle Scholar
  22. Lefort F, Kyvelos CJ, Zervou M, Edwards KJ, Roubelakis-Angelakis KA (2002) Characterization of new microsatellite loci from Vitis vinifera and their conservation on some Vitis species and hybrids. Mol Ecol Notes 2(1):20–21. doi:10.1046/j.1471-8286.2002.00130.x CrossRefGoogle Scholar
  23. Marcotrigiano M (1997) Chimeras and variegation: patterns of deceit. HortScience 32(5):773–784Google Scholar
  24. Marcotrigiano M (2000) Herbivory could unlock mutations sequestered in stratified shoot apices of genetic mosaics. Am J Bot 87(3):355–361. doi:10.2307/2656631 PubMedCrossRefGoogle Scholar
  25. Marcotrigiano M, Bernatzky R (1995) Arrangement of cell layers in the shoot apical meristems of periclinal chimeras influences cell fate. Plant J 7(2):193–202. doi:10.1046/j.1365-313X.1995.7020193.x CrossRefGoogle Scholar
  26. Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J et al (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3(2):1572–1588. doi:10.1023/A:1009633005390 CrossRefGoogle Scholar
  27. Moncada X, Pelsy F, Merdinogul D, Hinrichsen P (2006) Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. Genome 49:1459–1472. doi:10.1139/G06-102 PubMedCrossRefGoogle Scholar
  28. Müller-Stoll WR (1950) Mutative Färbungsänderungen bei Weintrauben. Theor Appl Genet 20:288–291. doi:10.1007/BF00709449 CrossRefGoogle Scholar
  29. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  30. Pineda-Krch M, Lehtilä K (2004) Cost and benefits of genetic heterogeneity within organisms. J Evol Biol 17:1167–1177. doi:10.1111/j.1420-9101.2004.00808.x PubMedCrossRefGoogle Scholar
  31. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238. doi:10.1007/BF00564200 CrossRefGoogle Scholar
  32. Pratt C (1959) Radiation damage in shoot apices of concord grape. Am J Bot 46:103–109. doi:10.2307/2439465 CrossRefGoogle Scholar
  33. Regner F, Stadlbauer A, Eisenheld C, Kaserer H (2000) Genetic relationship and related cultivar. Am J Enol Vitic 51:7–14Google Scholar
  34. Riaz S, Garrison KE, Dangl GS, Boursiquot J-M, Meredith CP (2002) Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Am Soc Hortic Sci 127(4):508–514Google Scholar
  35. Rodríguez López CM, Wetten AC, Wilkinson MJ (2004) Detection and quantification of in vitro-culture induced chimerism using simple sequence repeat (SSR) analysis in Theobroma cacao (L.). Theor Appl Genet 110:157–166. doi:10.1007/s00122-004-1823-5 PubMedCrossRefGoogle Scholar
  36. Rohlf FJ (2000) NTSYSpc Nummerical taxonomy and multivariate analysis, Version 2.1. Exeter Software, New YorkGoogle Scholar
  37. Santelices B (2004) Mosaicism and chimerism as components of intraorganismal genetic heterogeneity. J Evol Biol 17:1187–1188. doi:10.1111/j.1420-9101.2004.00813.x PubMedCrossRefGoogle Scholar
  38. Schmidt A (1924) Histologische Studien an phanerogamen Vegetationspunkten. Bot Arch 8:345–404Google Scholar
  39. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN, Version 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, GenevaGoogle Scholar
  40. Scott KD, Ablett EM, Lee LS, Henry RJ (2000) AFLP markers distinguishing an early mutant of flame seedless grape. Euphytica 113:245–249. doi:10.1023/A:1003977408214 CrossRefGoogle Scholar
  41. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkeller H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373. doi:10.1139/gen-42-3-367 PubMedCrossRefGoogle Scholar
  42. Skene KGM, Barlass M (1983) Studies on the fragmented shoot apex of grapevine. J Exp Bot 34(147):1271–1280. doi:10.1093/jxb/34.10.1271 CrossRefGoogle Scholar
  43. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  44. Stenkamp S, Ottaviano F, Becker M, Forneck A, Blaich R (2005) Chimären—in verbreitetes Phänomen im Weinbau. In: Schruft G (ed) Deutsches Weinbau-Jahrbuch 2005. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  45. Stenkamp S, Becker M, Hill B, Blaich R, Forneck A (2007) Genetic variation among chimeric Pinot Meunier clones (Vitis vinifera L.). In: IX international conference on grape genetics and breeding, Udine, Italy, 2–6 July 2006, Acta Hort (in press)Google Scholar
  46. Stewart RN, Dermen H (1970) Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am J Bot 57(7):816–826. doi:10.2307/2441339 CrossRefGoogle Scholar
  47. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  48. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed a sequence-tagged sites (STSs). Theor Appl Genet 86:985–990Google Scholar
  49. Thompson MM, Olmo HP (1963) Cytohistological studies of cytochimeric and tetraploid grapes. Am J Bot 50:901–906. doi:10.2307/2439777 CrossRefGoogle Scholar
  50. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407 PubMedCrossRefGoogle Scholar
  51. Walker AR, Lee E, Robinson SP (2006) Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries are the result of deletion of two regulatory genes of the berry colour locus. Plant Mol Biol 62:623–635. doi:10.1007/s11103-006-9043-9 PubMedCrossRefGoogle Scholar
  52. Yakushiji H, Kobayashi S, Goto-Yamamoto N, Tae Jeong S, Sueta T, Mitani N et al (2006) A skin color mutation of grapevine, from black-skinned Pinot noir to white-skinned Pinot blanc, is caused by deletion of the functional VvmybA1 allele. Biosci Biotechnol Biochem 70(6):1506–1508. doi:10.1271/bbb.50647 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sabine H. G. Stenkamp
    • 1
    • 2
  • Manuel S. Becker
    • 1
  • Bernd H. E. Hill
    • 3
  • Rolf Blaich
    • 4
  • Astrid Forneck
    • 1
  1. 1.Department of Applied Plant Sciences and Plant Biology, Institute of Horticulture and ViticultureUniversity of Natural Resources and Applied Plant Sciences (BOKU)ViennaAustria
  2. 2.Institute of Viticulture/Grapevine Breeding/Wine Technology, Section for Grapevine Breeding & GraftingGeisenheim Research CentreGeisenheimGermany
  3. 3.State Institute for ViticultureOenology and Fruit Technology (LVWO)WeinsbergGermany
  4. 4.Institute for Special Crop Cultivation and Crop PhysiologyUniversity of HohenheimStuttgartGermany

Personalised recommendations