Advertisement

Euphytica

, 165:353 | Cite as

Genetic stability at nuclear and plastid DNA level in regenerated plants of Solanum species and hybrids

  • Riccardo Aversano
  • Salvatore Savarese
  • Jose Maria De Nova
  • Luigi Frusciante
  • Maria Punzo
  • Domenico CarputoEmail author
Article

Abstract

In this work we detected the extent of variability at nuclear and cytoplasmic DNA level of regenerated plants belonging to Solanum genotypes with a different genetic background and somatic chromosome number. As for the nuclear characterization, a total of 66 (18.5%) polymorphic bands were scored using 13 ISSR primers on 45 randomly selected regenerants. Our results show that the regenerants obtained from clone cmm 1T and, at lower level, those from cph 1C are unstable under in vitro conditions or rather more prone to in vitro-induced stress leading to somaclonal variation than the other genotypes used. Two types of changes were observed: disappearance of parental ISSR fragments, termed “loss”; appearance of novel ISSR fragments, termed “gain”. The most frequent event occurring in the regenerants was the loss of fragments (41 bands). Regenerated plants were analyzed with seven plastid universal primers to determine the cytoplasmic composition at chloroplast level. All cpDNA primer pairs tested produced amplicons of the same size in all genotypes analyzed and no polymorphic fragments were observed with any universal primers used. Our results show that under in vitro culture conditions genotype affects the integrity of the genome. In addition, the absence of polymorphism at plastid level confirms the greater genetic stability of cytoplasmic DNA.

Keywords

AFLP Molecular markers Potato Somaclonal variation Tissue culture 

Notes

Acknowledgments

Contribution no. 177 from Department of Soil, Plant, Environmental and Animal Production Sciences. Jose Maria De Nova was supported by the SOCRATES-ERASMUS EU project.

References

  1. Barandalla L, Ritter E, Ruiz De Galarreta JI (2006) Oryzalin treatment of potato diploids yields tetraploid and chimeric plants from which euploids could be derived by callus induction. Potato Res 10:143–154Google Scholar
  2. Bastia T, Scotti N, Cardi T (2001) Organelle DNA analysis of Solanum and Brassica somatic hybrids by PCR with “Universal Primers”. Theor Appl Genet 102:1265–1272. doi: 10.1007/s001220000508 CrossRefGoogle Scholar
  3. Bennici A, Anzidei M, Vendramin GG (2004) Genetic stability and uniformity of Foeniculum vulgare Mill. regenerated plants through organogenesis and somatic embryogenesis. Plant Sci 166:221–227. doi: 10.1016/j.plantsci.2003.09.010 CrossRefGoogle Scholar
  4. Binsfield PC, Peters JA, Augustin E (1996) Isoenzymatic variation in potato somaclones (Solanum tuberosum L.). Braz J Genet 19:117–121Google Scholar
  5. Bordallo PN, Silva DH, Maria J et al (2004) Somaclonal variation on in vitro callus culture potato cultivars. Hortic Bras 22(2):300–304CrossRefGoogle Scholar
  6. Bornet B, Muller C, Paulus F et al (2002) Highly informative nature of inter simple sequence repeat (ISSR) sequence amplified using tri- and tetra-nucleotide primers from DNA cauliflowers (Brassica oleracea var. botrytis L.). Genome 45:890–896. doi: 10.1139/g02-061 PubMedCrossRefGoogle Scholar
  7. Bouman H, De Klerk GJ (2001) Measurement of the extent of somaclonal variation in begonia plants regenerated under various conditions. Comparison of three assays. Theor Appl Genet 102:111–117. doi: 10.1007/s001220051625 CrossRefGoogle Scholar
  8. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131. doi: 10.1111/j.1365-294X.1995.tb00201.x PubMedCrossRefGoogle Scholar
  9. Devarumath RM, Nandy S, Rani V et al (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C assamica spp. assamica (Assam-India type). Plant Cell Rep 21:166–173. doi: 10.1007/s00299-002-0496-2 CrossRefGoogle Scholar
  10. Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117. doi: 10.1038/299111a0 PubMedCrossRefGoogle Scholar
  11. Dumolin-Lapègue S, Bodénès C, Petit RJ (1996) Detection of rare polymorphisms in mitochondrial DNA of oaks with PCR RFLP combined with SSCP analysis. For Genet 3:227–230Google Scholar
  12. Etienne H, Bertrand B (2003) Somaclonal variation in Coffea arabica: effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiol 23(6):419–426PubMedGoogle Scholar
  13. Fourré JL, Berger P, Niquet L et al (1997) Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94:159–169. doi: 10.1007/s001220050395 CrossRefGoogle Scholar
  14. Gostimsky SA, Kokaeva ZG, Konovalov FA (2005) Studying plant genome variation using molecular markers. Russ J Genet 41(4):480–492. doi: 10.1007/s11177-005-0101-1 CrossRefGoogle Scholar
  15. Guo WL, Gong L, Ding ZF et al (2006) Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. f as revealed by ISSR and RAPD markers. Plant Cell Rep 25:896–906. doi: 10.1007/s00299-006-0131-8 PubMedCrossRefGoogle Scholar
  16. Hanneman RE Jr, Bamberg JB (1986) Inventory of tuberbearing Solonum species. Research Bulletin 533, University of Wisconsin, Madison, Wisconsin, p 216Google Scholar
  17. Iovene M, Frusciante L, Carputo D (2002) Shoot regeneration and chromosome doubling in accession of 2x(1EBN) and 4x(2EBN) wild Solanum species. J Genet Breed 56:99–105Google Scholar
  18. Iovene M, Savarese M, Cardi T et al (2007) Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. Genome 50(5):443–450. doi: 10.1139/G07-024 PubMedCrossRefGoogle Scholar
  19. Jahne A, Lazzeri PA, Jager-Gusson M et al (1991) Plant regeneration from embryogenic cell suspensions derived from anther culture of barley (Hordeum vulgare L.). Theor Appl Genet 82:74–80. doi: 10.1007/BF00231280 CrossRefGoogle Scholar
  20. Karlsson SB, Vasil IK (1986) Growth, cytology and flow cytometry of embryogenic cell suspension cultures of Panicum maximum Jacq. (Guinea grass) and Pennisetum purpureum Shum. (Napier grass). J Plant Physiol 123:211–227Google Scholar
  21. Karp A, Risiott R, Jones MJK et al (1984) Chromosome doubling in monohaploid and dihaploid potatoes by regeneration from cultured leaf explants. Plant Cell Tissue Organ Cult 3:363–373. doi: 10.1007/BF00043089 CrossRefGoogle Scholar
  22. Kawata M, Ohmiya A, Shimamoto Y et al (1995) Structural-change in the plastid DNA of rice (Oryza sativa L.) during tissue-culture. Theor Appl Genet 90:364–371. doi: 10.1007/BF00221978 CrossRefGoogle Scholar
  23. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424. doi: 10.1111/j.1365-294X.2005.02416.x PubMedCrossRefGoogle Scholar
  24. Kuznetsova OI, Ash OA, Khartina GA et al (2005) RAPD and ISSR analyses of regenerated pea Pisum sativum L. plants. Russ J Genet 41(1):60–65Google Scholar
  25. Langille AR, Lan Y, Gustine DL (1998) Seeking improved nutritional properties for the potato: ethionine-resistant protoclones. Am Potato J 75:201–205CrossRefGoogle Scholar
  26. Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496. doi: 10.1007/s00299-004-0870-3 PubMedCrossRefGoogle Scholar
  27. Matthews D, McNicoll J, Harding K et al (1999) 5′-Anchored simple-sequence repeat primers are useful for analyzing potato somatic hybrids. Plant Cell Rep 19:210–212. doi: 10.1007/s002990050735 CrossRefGoogle Scholar
  28. McGregor CE, Lambert CA, Greyling MM et al (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFPL and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144. doi: 10.1023/A:1003925620546 CrossRefGoogle Scholar
  29. Mun JH, Kim DJ, Choi HK et al (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555. doi: 10.1534/genetics.105.054791 PubMedCrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium from rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:251–258. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  31. Orczyk W, Przetakiewicz J, Nadoloska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum—application to genetics and breeding. Plant Cell Tissue Organ Cult 74:1–13. doi: 10.1023/A:1023396405655 CrossRefGoogle Scholar
  32. Palombi MA, Lombardo B, Caboni E (2007) In vitro regeneration of wild pear (Pyrus pyraster Burgsd) clones tolerant to Fe- chlorosis and somaclonal variation analysis by RAPD markers. Plant Cell Rep 26:489–496. doi: 10.1007/s00299-006-0256-9 PubMedCrossRefGoogle Scholar
  33. Petit RJ, Denesure B, Dumoli S (1998) cpDNA and mtDNA primers in plants. In: Karp A, Issac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman and Hall, LondonGoogle Scholar
  34. Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue culture: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226. doi: 10.1073/pnas.91.12.5222 PubMedCrossRefGoogle Scholar
  35. Piccioni E, Barcaccia G, Falcinelli M et al (1997) Estimating somaclonal variation in axillary branching propagation and indirect somatic embryogenesis by RAPD fingerprinting. Int J Plant Sci 158:556–562. doi: 10.1086/297467 CrossRefGoogle Scholar
  36. Rani V, Singh KP, Shiran B et al (2000) Evidence for new nuclear and mitochondrial genome organization among high-frequency somatic embryogenesis-derived plants of allotetraploids Coffea arabica L. (Rubiaceae). Plant Cell Rep 19:1013–1020. doi: 10.1007/s002990000228 CrossRefGoogle Scholar
  37. Rival A, Bertrand L, Beale T et al (1998) Suitability of RAPD analysis for detection of somaclonal variation in oil palm (Elaeis guineensis Jacq.). Plant Breed 117:73–76. doi: 10.1111/j.1439-0523.1998.tb01451.x CrossRefGoogle Scholar
  38. Rohlf FJ (1998) NTSYS-PC numerical taxonomy and multivariate analysis system. Version 2.0. Exeter Publications, SetauketGoogle Scholar
  39. Romano A, Raemakers K, Visser R et al (2001) Transformation of potato (Solanum tuberosum) using particle bombardment. Plant Cell Rep 20:198–204. doi: 10.1007/s002990000314 CrossRefGoogle Scholar
  40. Savarese S (2008) Genotipizzazione e fenotipizzazione di ibridi somatici Solanum tuberosum (+) S. bulbocastanum e potenzialita’ di utilizzazione nel miglioramento genetico. PhD thesis, University of Naples Federico II, ItalyGoogle Scholar
  41. Scarano MT, Abbate L, Ferrante S et al (2002) ISSR-PCR technique: a useful method for characterizing new allotetraploid somatic hybrids of mandarin. Plant Cell Rep 20:1162–1166. doi: 10.1007/s00299-002-0450-3 CrossRefGoogle Scholar
  42. Scotti N, Monti L, Cardi T (2003) Organelle DNA variation in parental Solanum spp. genotypes and nuclear-cytoplasmic interaction in Solanum tuberosum (+) S. commersonii somatic hybrids-backcross progeny. Theor Appl Genet 108:87–94. doi: 10.1007/s00122-003-1406-x PubMedCrossRefGoogle Scholar
  43. Sebastiani L, Lenzi A, Pugliesi C et al (1994) Somaclonal variation for resistance to Verticillium dahliae in potato (Solanum tuberosum L.) plants regenerated from callus. Euphytica 80:5–11. doi: 10.1007/BF00039292 CrossRefGoogle Scholar
  44. Sharma SK, Bryan GJ, WinWeld MO et al (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226:1449–1458. doi: 10.1007/s00425-007-0583-2 PubMedCrossRefGoogle Scholar
  45. Shihron Abarbanell D, Breiman A (1991) Comprehensive molecular characterization of tissue-culture-derived Hordeum marinum plants. Theor Appl Genet 83:71–80. doi: 10.1007/BF00229228 CrossRefGoogle Scholar
  46. Smulders MJM, Rus-Kortekaas W, Gilissen LJW (1995) Natural variation in patterns of polysomaty among individual tomato plants and their regenerated progeny. Plant Sci 106:129–139. doi: 10.1016/0168-9452(95)04082-6 CrossRefGoogle Scholar
  47. Struik PC, Wiersema SG (1999) Seed potato technology. Wageningen Academic Publishers, The NetherlandsGoogle Scholar
  48. Swedlund B, Vasil IK (1985) Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theor Appl Genet 69:575–581. doi: 10.1007/BF00251107 CrossRefGoogle Scholar
  49. Taylor RJ, Secor GA, Ruby CL et al (1993) Tuber yield, soft rot resistance, bruising resistance and processing quality in a population of potato (cv. Crystal) somatoclones. Am Potato J 70:117–130. doi: 10.1007/BF02857179 CrossRefGoogle Scholar
  50. Thieme R, Griess H (1996) Somaclonal variation of haulm growth, earliness, and yield in potato. Potato Res 39:355–365. doi: 10.1007/BF02357939 CrossRefGoogle Scholar
  51. Veilleux RE (2005) Cell and tissue culture of potato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceae crops, vol 1. Science Publishers, Inc, Enfield, pp 185–208Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Riccardo Aversano
    • 1
  • Salvatore Savarese
    • 1
  • Jose Maria De Nova
    • 1
  • Luigi Frusciante
    • 1
  • Maria Punzo
    • 1
  • Domenico Carputo
    • 1
    Email author
  1. 1.Department of Soil, Plant, Environmental and Animal Production SciencesUniversity of Naples “Federico II”PorticiItaly

Personalised recommendations