, Volume 165, Issue 2, pp 293–311 | Cite as

The inheritance of chemical phenotype in Cannabis sativa L. (III): variation in cannabichromene proportion

  • E. P. M. de MeijerEmail author
  • K. M. Hammond
  • M. Micheler


The mechanism that controls the proportion of cannabichromene (CBC), a potential pharmaceutical, in the cannabinoid fraction of Cannabis sativa L. is explored. As with tetrahydrocannabinol (THC) and cannabidiol (CBD), CBC is an enzymatic conversion product of the precursor cannabigerol (CBG). CBC is reported to dominate the cannabinoid fraction of juveniles and to decline with maturation. This ontogeny was confirmed in inbred lines with different mature chemotypes. A consistent CBC presence was found in early leaves from a diverse clone collection, suggesting that CBC synthase is encoded by a fixed locus. Morphological variants possessing a ‘prolonged juvenile chemotype’ (PJC), a substantial proportion of CBC persisting up to maturity, are presented. PJC is associated with a reduced presence of floral bracts, bracteoles, and capitate-stalked trichomes. Genetic factors causing these features were independent of the allelic chemotype locus B that was previously postulated and regulates THC and CBD synthesis and CBG accumulation. In contrast to previously described Cannabis chemotypes, the cannabinoid composition of PJCs showed plasticity in that reduced light levels increased the CBC proportion. The ability of PJC plants to enable the production of pharmaceutical raw material with high CBC purity is demonstrated.


Cannabichromene Cannabis Chemotype Genotype Ontogeny Plasticity 



We are grateful to Giuseppe Mandolino for his useful comments on a primary version of the manuscript and to David Potter for introducing the possibility of a more prominent CBC biosynthesis in the sessile trichomes.


  1. Adams R, Hunt M, Clark JH (1940) Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. J Am Chem Soc 62:196–200. doi: 10.1021/ja01858a058 CrossRefGoogle Scholar
  2. Baker PB, Gough TA, Taylor BJ (1983) The physical and chemical features of Cannabis plants grown in the United Kingdom of Great Britain and Northern Ireland from seeds of known origin-Part II: second generation studies. Bull Narc 35:51–62PubMedGoogle Scholar
  3. Beutler JA, Der Marderosian AH (1978) Chemotaxonomy of Cannabis I. Crossbreeding between Cannabis sativa and C. ruderalis, with analysis of cannabinoid content. Econ Bot 32:387–394Google Scholar
  4. de Meijer EPM, Hammond KM (2005) The inheritance of chemical phenotype in Cannabis sativa L. (II): cannabigerol predominant plants. Euphytica 145:189–198. doi: 10.1007/s10681-005-1164-8 CrossRefGoogle Scholar
  5. de Meijer EPM, van der Kamp HJ, van Eeuwijk FA (1992) Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica 62:187–200. doi: 10.1007/BF00041753 CrossRefGoogle Scholar
  6. de Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranalli P et al (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335–346PubMedGoogle Scholar
  7. de Zeeuw RA, Wijsbek J, Breimer DD, Vree TB, van Ginneken CA, van Rossum JM (1972) Cannabinoids with a propyl side chain in Cannabis. Occurrence and chromatographic behaviour. Science 175:778–779. doi: 10.1126/science.175.4023.778 PubMedCrossRefGoogle Scholar
  8. Fellermeier M, Zenk MH (1998) Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 427:283–285. doi: 10.1016/S0014-5793(98)00450-5 PubMedCrossRefGoogle Scholar
  9. Gaoni Y, Mechoulam R (1964a) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647. doi: 10.1021/ja01062a046 CrossRefGoogle Scholar
  10. Gaoni Y, Mechoulam R (1964b) The structure and synthesis of cannabigerol a new hashish constituent. Proc Chem Soc London, March 1964:82Google Scholar
  11. Gaoni Y, Mechoulam R (1966) Cannabichromene, a new active principle in hashish. Chem Commun 1:20–21. doi: 10.1039/c19660000020 Google Scholar
  12. Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91:966–975. doi: 10.3732/ajb.91.6.966 CrossRefGoogle Scholar
  13. Holley JH, Hadley KW, Turner CE (1975) Constituents of Cannabis sativa L. XI: cannabidiol and cannabichromene in samples of known geographical origin. J Pharm Sci 64:892–894. doi: 10.1002/jps.2600640546 PubMedCrossRefGoogle Scholar
  14. Mahlberg PG, Hemphill JK (1983) Effect of light quality on cannabinoid content of Cannabis sativa L. (Cannabaceae). Bot Gaz 144:43–48. doi: 10.1086/337342 CrossRefGoogle Scholar
  15. Mahlberg PG, Kim ES (2004) Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). J Ind Hemp 9:15–36. doi: 10.1300/J237v09n01_04 CrossRefGoogle Scholar
  16. Mechoulam R, Shvo Y (1963) Hashish-I, the structure of cannabidiol. Tetrahedron 19:2073–2078. doi: 10.1016/0040-4020(63)85022-X CrossRefGoogle Scholar
  17. Morimoto S, Komatsu K, Taura F, Shoyama Y (1997) Enzymological evidence for cannabichromenic acid biosynthesis. J Nat Prod 60:854–857. doi: 10.1021/np970210y CrossRefGoogle Scholar
  18. Morimoto S, Komatsu K, Taura F, Shoyama Y (1998) Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry 49:1525–1529. doi: 10.1016/S0031-9422(98)00278-7 PubMedCrossRefGoogle Scholar
  19. Pacifico D, Miselli F, Carboni A, Moschella A, Mandolino G (2008) Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 160:231–240. doi: 10.1007/s10681-007-9543-y CrossRefGoogle Scholar
  20. Rowan MG, Fairbairn JW (1977) Cannabinoid patterns in seedlings of Cannabis sativa L. and their use in the determination of chemical race. J Pharm Pharmacol 29:491–494PubMedGoogle Scholar
  21. Shoyama Y, Yagi M, Nishioka I (1975) Biosynthesis of cannabinoid acids. Phytochemistry 14:2189–2192. doi: 10.1016/S0031-9422(00)91096-3 CrossRefGoogle Scholar
  22. Shoyama Y, Hirano H, Nishioka I (1984) Biosynthesis of propyl cannabinoid acid and its biosynthetic relationship with pentyl and methyl cannabinoid acids. Phytochemistry 23:1909–1912. doi: 10.1016/S0031-9422(00)84939-0 CrossRefGoogle Scholar
  23. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582. doi: 10.1093/pcp/pci166 PubMedCrossRefGoogle Scholar
  24. Small E, Beckstead HD (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 36:144–165PubMedGoogle Scholar
  25. Small E, Marcus D (2003) Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ Bot 57:545–558. doi: 10.1663/0013-0001(2003)057[0545:TLIHCS]2.0.CO;2 CrossRefGoogle Scholar
  26. Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of delta-1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 38:9766–9767. doi: 10.1021/ja00143a024 CrossRefGoogle Scholar
  27. Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. J Biol Chem 271:17411–17416. doi: 10.1074/jbc.271.29.17411 PubMedCrossRefGoogle Scholar
  28. Turner CE, Hadley K (1973) Constituents of Cannabis sativa L. II: absence of cannabidiol in an African variant. J Pharm Sci 62:251–255. doi: 10.1002/jps.2600620214 PubMedCrossRefGoogle Scholar
  29. Valle JR, Vieira JEV, Aucelio JG, Valio IFM (1978) Influence of photoperiodism on cannabinoid content of Cannabis sativa L. Bull Narc 30:67–68PubMedGoogle Scholar
  30. Vogelmann AF, Turner JC, Mahlberg PG (1988) Cannabinoid composition in seedlings compared to adult plants of Cannabis sativa. J Nat Prod 51:1075–1079. doi: 10.1021/np50060a004 CrossRefGoogle Scholar
  31. Vree TB, Breimer DD, van Ginneken CAM, van Rossum JM (1971) Identification of the methyl and propyl homologues of CBD, THC and CBN in hashish by a new method of combined gas chromatography-mass spectrometry. Acta Pharm Sued 8:683–684Google Scholar
  32. Yotoriyama M, Ito I, Takashima D, Shoyama Y, Nishioka I (1980) Plant breeding of Cannabis. Determination of cannabinoids by high-pressure liquid chromatography. Yakugaku Zasshi 100:611–614PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. P. M. de Meijer
    • 1
    Email author
  • K. M. Hammond
    • 1
  • M. Micheler
    • 1
  1. 1.GW Pharmaceuticals plc.SalisburyUK

Personalised recommendations