Euphytica

, Volume 164, Issue 2, pp 571–582 | Cite as

Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties

  • M. R. Ercolano
  • P. Carli
  • A. Soria
  • A. Cascone
  • V. Fogliano
  • L. Frusciante
  • A. Barone
Article

Abstract

Fruit flavour of traditional tomato ecotypes differs from that of modern varieties, the latter being often blamed for lack of flavour. To respond to consumer complaints breeders should know the range of genetic variability available in tomato resources, including local ecotypes, for improving flavour. For this purpose, multitrait characterization, including biochemical, sensorial and molecular analyses, was performed on 12 Italian tomato ecotypes that belong to different types (San Marzano, Sorrento, and Vesuvio). The ecotypes showed a significant variation both in glucose and citric acid content. As for amino acid determination, lysine, aspartic acid and serine showed significant variation among the three types analyzed. Sensory analysis clearly evidenced differences among genotypes: the San Marzano ecotypes revealed sensory profiles that differ from the control processing variety in perception of sweetness and sourness, whereas the Sorrento and Vesuvio ecotype profiles were similar to the fresh market control. In particular, Vesuvio genotypes exhibited a good intensity of tomato aroma and sweetness and an intermediate level of acidity. Finally, molecular characterization performed through AFLP markers provided evidence for a very high level of polymorphism: an ecotype-specific AFLP pattern was identified for at least 11 genotypes, thus defining their molecular fingerprints.

Keywords

Solanum lycopersicum Diversity Flavour Ecotypes AFLP markers 

References

  1. Baldwin EA, Scott JW, Einstein MA, Malundo TMM, Carr BT, Shewfelt RL et al (1998) Relationship between sensory and instrumental analysis for tomato flavour. J Am Soc Hortic Sci 123:906–915Google Scholar
  2. Bryun JW, Garretsen F, Kooistra E (1971) Variation in taste and chemical composition of the tomato (Lycopersicon esculentum). Euphytica 20:214–227. doi:10.1007/BF00056081 CrossRefGoogle Scholar
  3. Bucheli P, Voirol E, de la Torre R, Rytz A, Tanksley SD, Pétiard V (1999) Definition of non-volatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J Food Agric Chem 47:659–664. doi:10.1021/jf980875l CrossRefGoogle Scholar
  4. Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098. doi:10.1093/jxb/erf058 PubMedCrossRefGoogle Scholar
  5. Davies JN, Hobson GE (1981) The constituent of tomato fruit—the influence of environment, nutrition, and genotype. Crit Rev Food Sci Technol 15:205–280CrossRefGoogle Scholar
  6. De Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48. doi:10.1016/j.plantsci.2003.07.005 CrossRefGoogle Scholar
  7. Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302. doi:10.2307/1932409 CrossRefGoogle Scholar
  8. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769. doi:10.1038/nrm1451 PubMedCrossRefGoogle Scholar
  9. Fuke S, Shimizu T (1993) Sensory and preference aspects of umami. Trends Food Sci Technol 4:246–251. doi:10.1016/0924-2244(93)90139-2 CrossRefGoogle Scholar
  10. Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177. doi:10.1023/A:1020209930031 CrossRefGoogle Scholar
  11. Füzfai Z, Katona ZF, Kovács E, Molnár-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem 52:7444–7452. doi:10.1021/jf040118p PubMedCrossRefGoogle Scholar
  12. Gartenmann K, Kochhar S (1999) Short-chain peptide analysis by high-performance liquid chromatography coupled to electrospray ionization mass spectrometer after derivatization with 9-fluorenylmethyl chloroformate. J Agric Food Chem 47:5068–5071. doi:10.1021/jf990710s PubMedCrossRefGoogle Scholar
  13. Gennaro L, Leonardi C, Esposito F, Salucci M, Maiani G, Quaglia G et al (2002) Flavonoid and carbohydrate contents in Tropea red onions: effects of homelike peeling and storage. J Agric Food Chem 50:1904–1910. doi:10.1021/jf011102r PubMedCrossRefGoogle Scholar
  14. Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P et al (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x (L. pennellii) F2 populations. Theor Appl Genet 99:254–271. doi:10.1007/s001220051231 CrossRefGoogle Scholar
  15. Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P et al (1998) Genetic and physical localization of the root-knot nematode resistance locus in tomato. Mol Gen Genet 257:376–385. doi:10.1007/s004380050660 PubMedCrossRefGoogle Scholar
  16. Lee HS (1993) HPLC method for separation and determination of non-volatile organic acids in orange juice. J Agric Food Chem 41:1991–1993. doi:10.1021/jf00035a033 CrossRefGoogle Scholar
  17. Lisso J, Altmann T, Mussig C (2006) Metabolic changes in fruits of the tomato dx mutant. Phytochemistry 67:2232–2238. doi:10.1016/j.phytochem.2006.07.008 PubMedCrossRefGoogle Scholar
  18. Malundo TMM, Shewfelt RL, Scott JW (1995) Flavour quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol Technol 6:103–110. doi:10.1016/0925-5214(94)00052-T CrossRefGoogle Scholar
  19. McCluskey JJ, Loureiro ML (2003) Consumer preferences and willingness to pay for food labeling: a discussion of empirical studies. J Food Distrib Res 34(3):95–102Google Scholar
  20. Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99. doi:10.3732/ajb.91.1.86 CrossRefGoogle Scholar
  21. Park YH, West MA, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518. doi:10.1139/g04-004 PubMedCrossRefGoogle Scholar
  22. Roessner U, Willmitzer L, Fernie AR (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127(3):749–764. doi:10.1104/pp.127.3.749 PubMedCrossRefGoogle Scholar
  23. Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate system, ver. 2.0. Exeter Software publisher, New YorkGoogle Scholar
  24. Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40. doi:10.1139/gen-43-1-29 PubMedCrossRefGoogle Scholar
  25. Salles C, Nicklaus S, Septier C (2003) Determination and gustatory properties of taste-active compounds in tomato juice. Food Chem 81:395–402. doi:10.1016/S0308-8146(02)00469-7 CrossRefGoogle Scholar
  26. Schauer N, Semel Y, Roessner U, Balbo I, Carrari F, Pleban T et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454. doi:10.1038/nbt1192 PubMedCrossRefGoogle Scholar
  27. Sims WL (1980) History of tomato production for industry around the world. Acta Hortic 100:25–26Google Scholar
  28. Staub JE, Serquen FC, Gupta M (1996) Genetic markers, map construction and their application in plant breeding. Hortic Sci 31:729–741Google Scholar
  29. Stevens MA (1986) Inheritance of tomato fruit quality components. Plant Breed Rev 4:273–311Google Scholar
  30. Stevens MA, Kader AA, Albright-Halton M, Algazi M (1977) Genotypic variation for flavor and composition in fresh-market tomatoes. J Am Soc Hortic Sci 102:680–689Google Scholar
  31. Stevens MA, Kader AA, Albright M (1979) Potential for increasing tomato flavor via sugar and acid contents. J Am Soc Hortic Sci 104:40–42Google Scholar
  32. Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP et al (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J 8:785–794. doi:10.1046/j.1365-313X.1995.08050785.x PubMedCrossRefGoogle Scholar
  33. Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M et al (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57(4):887–896. doi:10.1093/jxb/erj074 PubMedCrossRefGoogle Scholar
  34. Vos PR, Hogers M, Bleeker M, Van de Lee R, Hornes M, Frijters A et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. R. Ercolano
    • 1
  • P. Carli
    • 1
  • A. Soria
    • 1
  • A. Cascone
    • 2
  • V. Fogliano
    • 2
  • L. Frusciante
    • 1
  • A. Barone
    • 1
  1. 1.Department of Soil, Plant, Environmental and Animal Production SciencesPorticiItaly
  2. 2.Department of Food Science Parco Gussone EdificioPorticiItaly

Personalised recommendations