, Volume 165, Issue 1, pp 79–88 | Cite as

Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea

  • Pratibha Kottapalli
  • Pooran M. Gaur
  • Sanjay K. Katiyar
  • Jonathan H. Crouch
  • Hutokshi K. Buhariwalla
  • Suresh Pande
  • Kishore K. Gali


Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.


Ascochyta blight Chickpea Cicer arietinum Genetic linkage map QTL mapping SSR markers 


  1. Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R et al (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111:185–195. doi:10.1007/s00122-005-1930-y PubMedCrossRefGoogle Scholar
  2. Ahmad F, Gaur PM, Slinkard AE (1992) Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L. Theor Appl Genet 83:620–627. doi:10.1007/BF00226907 CrossRefGoogle Scholar
  3. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218. doi:10.1007/BF02672069 CrossRefGoogle Scholar
  4. Benko-Iseppon AM, Winter P, Huettel B, Staginnus C, Muehlbauer FJ, Kahl G (2003) Molecular markers closely linked to Fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107:379–386. doi:10.1007/s00122-003-1260-x PubMedCrossRefGoogle Scholar
  5. Buhariwalla HK, Eshwar K, Jayashree B, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 16:1–14Google Scholar
  6. Cho S, Kumar J, Shultz JF, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 125:285–292. doi:10.1023/A:1020872009306 CrossRefGoogle Scholar
  7. Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theor Appl Genet 109:733–739. doi:10.1007/s00122-004-1693-x PubMedCrossRefGoogle Scholar
  8. Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729. doi:10.1007/s00122-003-1297-x PubMedCrossRefGoogle Scholar
  9. FAOSTAT data (2006) Last accessed 21 January 2008
  10. Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003a) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analogue markers. Theor Appl Genet 106:1447–1456PubMedGoogle Scholar
  11. Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Taylor PWJ (2003b) QTL analysis for Ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107:1257–1265PubMedCrossRefGoogle Scholar
  12. Gaur RB, Singh RD (1996) Effects of Ascochyta blight on grain yield and protein in chickpea. Indian J Mycol Plant Pathol 26:259–262Google Scholar
  13. Gaur PM, Slinkard AE (1990a) Genetic control and linkage relations of additional isozyme markers in chickpea. Theor Appl Genet 80:648–656CrossRefGoogle Scholar
  14. Gaur PM, Slinkard AE (1990b) Inheritance and linkage of isozyme coding genes in chickpea. J Hered 81:455–461Google Scholar
  15. Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42:210–217PubMedCrossRefGoogle Scholar
  16. Hüttel B, Santra J, Muehlbauer FJ, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490CrossRefGoogle Scholar
  17. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedGoogle Scholar
  18. Kazan K, Muehlbauer FJ, Weeden NF, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417–426CrossRefGoogle Scholar
  19. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  20. Labdi M, Robertson LD, Singh KB, Charrier A (1996) Genetic diversity and phylogenetic relationships among the annual Cicer species as revealed by isozyme polymorphisms. Euphytica 88:181–188CrossRefGoogle Scholar
  21. Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510PubMedCrossRefGoogle Scholar
  22. Mace ES, Buhariwalla HK, Crouch JH (2004) A high throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459a–459hCrossRefGoogle Scholar
  23. Millán T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Res 84:373–384CrossRefGoogle Scholar
  24. Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity and disease management. Aust J Agric Res 56:317–332CrossRefGoogle Scholar
  25. Pfaff T, Kahl G (2003) Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genomics 269:243–251PubMedGoogle Scholar
  26. Rakshit S, Winter P, Tekeoglu M, Juarez Muñoz J, Pfaff T, Benko-Iseppon AM, Muehlbauer FJ, Kahl G (2003) DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132:23–30CrossRefGoogle Scholar
  27. Reddy MV, Nene YL, Singh G, Bashir M (1990) Strategies for management of foliar disease of chickpea. In: Chickpea in the nineties. Proceedings of the 2nd international workshop on chickpea improvement, 4–8 Dec. 1989. ICRISAT Center, India, pp 117–127Google Scholar
  28. Santra DK, Tekeoglu M, Ratnaparkhe MB, Gupta VS, Ranjekar PK, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping QTL conferring resistance to ascochyta blight in chickpea (Cicer arietinum L.). Crop Sci 40:1606–1612Google Scholar
  29. Sethy NK, Shokeen B, Bhatia S (2003) Isolation and characterization of sequence-tagged microsatellite sites markers in chickpea (Cicer arietinum L.). Mol Ecol Notes 3:428–430CrossRefGoogle Scholar
  30. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119Google Scholar
  31. Singh KB, Reddy MV (1993) Resistance to six races of Ascochyta rabiei in the world germplasm collection of chickpea. Crop Sci 33:186–189Google Scholar
  32. Singh KB, Reddy MV, Haware MP (1992) Breeding for resistance to ascochyta blight in chickpea. In: Singh KB, Saxena MC (eds) Disease resistance in chickpea. ICARDA, Aleppo, pp 23–54Google Scholar
  33. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3:739–744CrossRefGoogle Scholar
  34. Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34PubMedCrossRefGoogle Scholar
  35. Tekeoglu M, Santra DK, Kaiser WJ, Muehlbauer FJ (2000) Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Sci 40:1251–1256Google Scholar
  36. Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854PubMedCrossRefGoogle Scholar
  37. Tekeoglu M, Isik M, Muehlbauer FJ (2004) QTL analysis of ascochyta blight resistance in chickpea. Turk J Agric For 28:183–187Google Scholar
  38. Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202PubMedGoogle Scholar
  39. Udupa SM, Sharma A, Sharma AP, Pai RA (1993) Narrow genetic variability in Cicer arietinum L. as revealed by RFLP analysis. J Plant Biochem Biotechnol 2:83–86Google Scholar
  40. Van Ooijen JW, Voorrip RE (2001) Join Map 3.0R Software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  41. Wang S, Basten CJ, Gaffney P, Zeng ZB (2003) Windows QTL Cartographer Version 2.0. Statistical Genetics, North Carolina State University, USAGoogle Scholar
  42. Winter P (1997) Development and use of molecular markers for chickpea improvement. In: Udupa SM, Weigand F (eds) DNA markers and breeding for resistance to Ascochyta blight in chickpea. Proceedings of the symposium on application of DNA fingerprinting for crop improvement: marker-assisted selection of chickpea for sustainable agriculture in the dry areas, ICARDA, Aleppo, Syria, pp 153–174Google Scholar
  43. Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahim S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101PubMedCrossRefGoogle Scholar
  44. Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163CrossRefGoogle Scholar
  45. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pratibha Kottapalli
    • 1
    • 2
  • Pooran M. Gaur
    • 1
  • Sanjay K. Katiyar
    • 2
  • Jonathan H. Crouch
    • 1
  • Hutokshi K. Buhariwalla
    • 1
  • Suresh Pande
    • 1
  • Kishore K. Gali
    • 1
  1. 1.International Crops Research Institute for the Semi-Arid TropicsHyderabadIndia
  2. 2.Department of BiotechnologyIndira Gandhi Agricultural UniversityRaipurIndia

Personalised recommendations