, Volume 165, Issue 2, pp 231–245 | Cite as

Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton

  • Jixiang WuEmail author
  • Osman Ariel Gutierrez
  • Johnie N. JenkinsEmail author
  • Jack C. McCarty
  • Jun Zhu


Genetic mapping is an essential tool for cotton (Gossypium hirsutum L.) molecular breeding and application of DNA markers for cotton improvement. In this present study, we evaluated an RI population including 188 RI lines developed from 94 F2-derived families and their two parental lines, ‘HS 46’ and ‘MARCABUCAG8US-1-88’, at Mississippi State, MS, for two years. Fourteen agronomic and fiber traits were measured. One hundred forty one (141) polymorphic SSR markers were screened for this population and 125 markers were used to construct a linkage map. Twenty six linkage groups were constructed, covering 125 SSR loci and 965 cM of overall map distance. Twenty four linkage groups (115 SSR loci) were assigned to specific chromosomes. Quantitative genetic analysis showed that the genotypic effects accounted for more than 20% of the phenotypic variation for all traits except fiber perimeter (18%). Fifty six QTLs (LOD > 3.0) associated with 14 agronomic and fiber traits were located on 17 chromosomes. One QTL associated with fiber elongation was located on linkage group LGU01. Nine chromosomes in sub-A genome harbored 27 QTLs with 10 associated with agronomic traits and 17 with fiber traits. Eight chromosomes in D sub-genome harbored 29 QTLs with 13 associated with agronomic traits and 16 with fiber traits. Chromosomes 3, 5, 12, 13, 14, 16, 20, and 26 harbor important QTLs for both yield and fiber quality compared to other chromosomes. Since this RI population was developed from an intraspecific cross within upland cotton, these QTLs should be useful for marker assisted selection for improving breeding efficiency in cotton line development.


Linkage mapping QTL Recombinant inbred lines Upland cotton Agronomic traits Fiber traits 


  1. Burr B, Burr FA (1991) Recombinant inbred for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60PubMedGoogle Scholar
  2. Burr B, Burr FA, Thompson KH, Albertson MC, Stuber C (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526PubMedGoogle Scholar
  3. Brubaker CL, Wendel JF (2001) RFLP diversity in cotton. In: Saha S, Jenkins JN (eds) Genetic improvement of cotton emerging technologies. Science Pulisher Inc, Enfield, CO, pp 3–31Google Scholar
  4. Fehr W (1987) Principles of cultivar development: volume one, theory and technique. Macmillan Publishing Co., New YorkGoogle Scholar
  5. Frelichowski JM, Palmer MB, Main D, Tomkins JP, Cantrell RG, Stelly DM et al (2006) Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Genet Genomics 275:479–491. doi: 10.1007/s00438-006-0106-z PubMedCrossRefGoogle Scholar
  6. Gutierrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheatham CL et al (2002) Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci 42:1841–1847Google Scholar
  7. Han Z, Guo W, Song X, Zhang T (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272(3):308–327. doi: 10.1007/s00438-004-1059-8 PubMedCrossRefGoogle Scholar
  8. Han Z, Wang C, Song X, Guo W, Gou J, Li C et al (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439. doi: 10.1007/s00122-005-0142-9 PubMedCrossRefGoogle Scholar
  9. Horne EC, Kumpatla SP, Patterson KA, Gupta M, Thompson SA (2004) Improved protocols for high-throughput sunflower and cotton genomic DNA extraction and PCR fidelity. Plant Mol Biol Rep 22:83–84. doi: 10.1007/BF02773352 CrossRefGoogle Scholar
  10. Jenkins JN, Wu J, McCarty JC, Saha S, Gutiérrez OA, Hayes R et al (2006) Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars: I. yield and yield components. Crop Sci 46:1169–1178. doi: 10.2135/cropsci2005.08-0269 CrossRefGoogle Scholar
  11. Jenkins JN, McCarty JC, Wu J, Saha S, Gutiérrez OA, Hayes R et al (2007) Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars: II. fiber quality traits. Crop Sci 47:561–572Google Scholar
  12. Jiang C, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424. doi: 10.1073/pnas.95.8.4419 PubMedCrossRefGoogle Scholar
  13. Kohel RJ, Yu J, Park YH, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172. doi: 10.1023/A:1012263413418 CrossRefGoogle Scholar
  14. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  15. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG et al (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626. doi: 10.1139/g03-050 PubMedCrossRefGoogle Scholar
  16. Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP et al (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140Google Scholar
  17. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C et al (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124:180–187. doi: 10.1111/j.1439-0523.2004.01039.x CrossRefGoogle Scholar
  18. Liu S, Cantrell G, McCarty JC, Stewart JM (2000a) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469Google Scholar
  19. Liu S, Saha S, Stelly D, Burr B, Cantrell RG (2000b) Chromosomal assignment of microsatellite loci in cotton. J Hered 91:326–332. doi: 10.1093/jhered/91.4.326 PubMedCrossRefGoogle Scholar
  20. Miller RG (1974) The jackknife: a review. Biometrika 61:1–15Google Scholar
  21. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175. doi: 10.1007/s00122-004-1612-1 PubMedCrossRefGoogle Scholar
  22. Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J et al (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441. doi: 10.1007/s00438-005-0037-0 PubMedCrossRefGoogle Scholar
  23. Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123Google Scholar
  24. Rao CR (1971) Estimation of variance and covariance components MINQUE theory. J Multivariate Anal 1:257–275. doi: 10.1016/0047-259X(71)90001-7 CrossRefGoogle Scholar
  25. Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploidy genome. Genetics 138:829–847PubMedGoogle Scholar
  26. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW et al (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417. doi: 10.1534/genetics.166.1.389 PubMedCrossRefGoogle Scholar
  27. Saha S, Callahan FE, Dollar DA, Creech JB (1997) Effect of lyophilization of cotton tissue on quality of extractable DNA, RNA, and protein. J Cotton Sci 1:10–14Google Scholar
  28. Saha S, Wu J, Jenkins JN, McCarty JC, Gutiérrez O, Stelly DM et al (2004) Effects of chromosome substitution from Gossypium barbadense L. into G. hirsutum L. TM-1 on agronomic and fiber traits. J Cotton Sci 8:162–169Google Scholar
  29. Saha S, Jenkins JN, Wu J, McCarty JC, Gutiérrez O, Percy RG et al (2006) Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics 172:1927–1938. doi: 10.1534/genetics.105.053371 PubMedCrossRefGoogle Scholar
  30. SAS Institute Inc (1999) SAS software Version 8.0. SAS Institute, Cary, NCGoogle Scholar
  31. Shappley ZW, Jenkins JN, Meredith WR, McCarty JC (1998a) An RFLP linkage map of upland cotton (Gossypium hirsutum L.). Theor Appl Genet 97:756–761. doi: 10.1007/s001220050952 CrossRefGoogle Scholar
  32. Shappley ZW, Jenkins JN, Zhu McCarty JC (1998b) Quantitative traits loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci 4:153–163Google Scholar
  33. Shen X, Guo W, Zhu X, Yuan Y, Yu J, Kohel R et al (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181. doi: 10.1007/s11032-004-4731-0 CrossRefGoogle Scholar
  34. Shen X, Zhang T, Guo W, Zhu X, Zhang X (2006) Mapping fiber and yield QTLs with main, epistatic, and QTL × Environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci:61–66.Google Scholar
  35. Tanksley SD, McCough SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066. doi: 10.1126/science.277.5329.1063 PubMedCrossRefGoogle Scholar
  36. Tomkins JP, Peterson DG, Yang TJ, Main D, Wilkins TA, Paterson AH et al (2001) Development of genomic resources for cotton (Gossypium hirsutum L.): BAC library construction, preliminary STC analysis, and identification of clones associated with fiber development. Mol Breed 8(3):255–261. doi: 10.1023/A:1013798716098 CrossRefGoogle Scholar
  37. Ulloa M, Meredith WR (2000) Genetic linkage map and QTL analysis of agronomic and fiber traits in an intraspecific population. J Cotton Sci 4:161–170Google Scholar
  38. Ulloa M, Meredith WR, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208. doi: 10.1007/s001220100739 PubMedCrossRefGoogle Scholar
  39. Ulloa M, Saha S, Jenkins JN, Meredith WR, McCarty JC, Stelly DM (2005) Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered 96:132–144. doi: 10.1093/jhered/esi020 PubMedCrossRefGoogle Scholar
  40. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  41. Wang D, Zhu J, Li Z, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264. doi: 10.1007/s001220051331 CrossRefGoogle Scholar
  42. Wu J (2001) Comparisons on properties of marker linkage and QTL mapping between two methods of recombinant line development. Ph.D. dissertation, Zhejiang University, Hangzhou, ChinaGoogle Scholar
  43. Wu J (2003) Genetic variation, conditional analysis, and QTL mapping for agronomic and fiber traits in upland cotton. Ph.D. diss. Diss. Abstra. Int. 64-09B:4119), Mississippi State Univ., Mississippi State, MSGoogle Scholar
  44. Wu J, Jenkins JN, Zhu J, McCarty JC, Watson CE (2003a) Comparisons of QTL mapping properties for two methods of recombinant inbred line development. Euphytica 132:159–166. doi: 10.1023/A:1024690711867 CrossRefGoogle Scholar
  45. Wu J, Zhu J, Jenkins JN (2003b) Mixed linear model approaches in quantitative genetic models (book chapter) In: Formulars, software, and techniques for genetics and breeders. The Haworth Reference Press Inc., New YorkGoogle Scholar
  46. Wu J, Jenkins JN, Zhu J, McCarty JC, Watson CE (2003c) Monte Carlo simulations on marker grouping and ordering. Theor Appl Genet 107:568–573. doi: 10.1007/s00122-003-1283-3 PubMedCrossRefGoogle Scholar
  47. Wu J, Jenkins JN, McCarty JC, Zhu J (2004) Genetic association of yield with its component traits for upland cotton recombinant inbred lines. Euphytica 140:171–179. doi: 10.1007/s10681-004-2897-5 CrossRefGoogle Scholar
  48. Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268PubMedGoogle Scholar
  49. Zhang Z, Xiao Y, Luo M, Li X, Luo X, Hou L et al (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144(1):91–99. doi: 10.1007/s10681-005-4629-x CrossRefGoogle Scholar
  50. Zhu J (1989) Estimation of genetic variance components in the general mixed model. Ph.D. Dissertation, North Carolina State University, Raleigh, NCGoogle Scholar
  51. Zhu J (1993) Methods of predicting genotype value and heterosis for offspring of hybrids. J Biomathematics Chin 8(1):32–44Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Plant and Soil SciencesMississippi State UniversityMississippi StateUSA
  2. 2.Crop Science Research LaboratoryUSDA-ARSMississippi StateUSA
  3. 3.Institute of BioinformaticsZhejiang UniversityHangzhouChina

Personalised recommendations