, Volume 164, Issue 3, pp 821–828 | Cite as

Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars

  • U. K. Bansal
  • E. Bossolini
  • H. Miah
  • B. Keller
  • R. F. Park
  • H. S. Bariana


A recombinant inbred line (RIL) population derived from the cross Arina/Forno was field tested for 2 years against Puccinia graminis f. sp. tritici under artificially created epidemic conditions. Both parents showed intermediate adult plant stem rust responses and the RIL population showed continuous variation for this trait. Composite interval mapping identified genomic regions controlling low stem rust response on chromosomes 5B and 7D consistently across all experiments. These genomic regions were named QSr.Sun-5BL and QSr.Sun-7DS and explained on an average 12% and 26% of the phenotypic variation in adult plant stem rust response, respectively. QSr.Sun-5BL mapped close to Xglk0354 and was contributed by Arina. The Lr34-linked markers csLV34 and swm10 were closely associated with QSr.Sun-7DS suggesting the involvement of Lr34 in controlling adult plant stem rust response of cultivar Forno. Additional minor and inconsistent QTLs explaining variation in adult plant stem rust response were identified on chromosome arms 1AS and 7BL. The QTL located on chromosome 7BL corresponded to the stem rust resistance gene Sr17 carried by cultivar Forno. A seedling stem rust resistance gene carried by Arina, SrAn1, was ineffective under field conditions and was mapped on the long arm of chromosome 2A. Genotypes carrying combinations of QSr.Sun-5BL and QSr.Sun-7DS based on positive alleles of the respective closest marker loci Xglk0354 and XcsLV34 or Xswm10 exhibited a lower response than either parent indicating an additive effect of these genes. Transfer of these genes into cultivars carrying Sr2 would provide a more effective and durable resistance against the stem rust pathogen. Markers csLV34 and/or swm10 could be used in marker assisted selection of QSr.Sun-7DS in breeding programs.


Wheat Stem rust Adult plant resistance Durable resistance Leaf rust 



We thank the Australian Grains Research and Development Corporation for financial support through the Australian Winter Cereal Molecular Marker Program and the Australian Cereal Rust Control Program. We thank Dr. R. A. McIntosh for his critical comments. This work was also supported by a grant from the Swiss National Science Foundation 105620 to BK.


  1. Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat XV location of rust resistance genes in VPM1 and their genetic linkage with other resistance genes in chromosome 2A. Genome 36:476–482. doi: 10.1139/g93-065 PubMedCrossRefGoogle Scholar
  2. Bariana HS, McIntosh RA (1995) Genetics of adult plant stripe rust resistance in four Australian wheat cultivars and French cultivar Hybride-de-Bersee. Plant Breed 114:485–491. doi: 10.1111/j.1439-0523.1995.tb00841.x CrossRefGoogle Scholar
  3. Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007a) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aust J Agric Res 58:576–587. doi: 10.1071/AR07124 CrossRefGoogle Scholar
  4. Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007b) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, Solomon N (eds) Wheat production in stressed environments. Developments in Plant Breeding 12:723–728Google Scholar
  5. Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1040–1062. doi: 10.1007/s00122-006-0364-5 CrossRefGoogle Scholar
  6. Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469Google Scholar
  7. Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY et al (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc 8th international wheat genetics symposium. China Agricultural Scientech Press, Beijing, pp 29–40Google Scholar
  8. Hare RA (1997) Characterization and inheritance of adult plant stem rust resistance in durum wheat. Crop Sci 37:1094–1098Google Scholar
  9. Hare RA, McIntosh RA (1979) Genetics and cytogenetics studies of durable adult-plant resistance in ‘Hope’ and related cultivars to wheat rusts. Z Pflanzenzuchtung 83:350–367Google Scholar
  10. Kaur J (2007) Characterization of rust resistance in wheat using classical and molecular approaches. Ph.D. Thesis, University of Sydney, Australia, pp 152Google Scholar
  11. Kolmer J, Singh RP, Viccars L, William M, Huerta-Espino J, Gavin D et al (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci (in press)Google Scholar
  12. Kerber ER, Aung T (1999) Leaf rust resistance gene Lr34 associated with nonsuppression of stem rust resistance in the wheat cultivar Canthatch. Phytopathology 88:518–521. doi: 10.1094/PHYTO.1999.89.6.518 CrossRefGoogle Scholar
  13. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  14. Kuchel H, Fox R, Reinheimer J, Mosionek L, Willey N, Bariana H, Jefferies S (2007) The successful application of a marker-assisted wheat breeding strategy. Mol Breed. doi: 10.1007/s11032-007-9092-z
  15. Lagudah ES, McFadden H, Singh RP, Heurta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30. doi: 10.1007/s00122-006-0406-z PubMedCrossRefGoogle Scholar
  16. Liu JQ, Kolmer JA (1998) Genetics of stem rust resistance in wheat cvs. Pasqua and AC Taber. Phytopathology 88:171–176. doi: 10.1094/PHYTO.1998.88.2.171 PubMedCrossRefGoogle Scholar
  17. Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932. doi: 10.1007/s00335-001-1016-3 PubMedCrossRefGoogle Scholar
  18. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publishing, Melbourne, p 199Google Scholar
  19. McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna A, Galterio G (eds) Proceedings of the 10th international wheat genetics symposium. Paestum, ItalyGoogle Scholar
  20. Messmer MM, Seyfarth R, Keller M, Schachemayr G, Winzeler M, Zanetti S et al (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431. doi: 10.1007/s001220050055 CrossRefGoogle Scholar
  21. Paillard S, Schnurbusch T, Abderhalden O, Messmer M, Sourdille P, Winzeler M et al (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242. doi: 10.1007/s00122-003-1361-6 PubMedCrossRefGoogle Scholar
  22. Pathan AK, Park RF (2007) Evaluation of seedling and adult plant resistance to stem rust in European wheat cultivars. Euphytica. doi: 10.1007/s10681-006-9308-z
  23. Park RF, Goyeau H, Felsenstein FG, Bartos P, Zeller FJ (2001) Regional phenotypic diversity of Puccinia triticina and wheat host resistance in Western Europe, 1995. Euphytica 122:113–127. doi: 10.1023/A:1012603500686 CrossRefGoogle Scholar
  24. Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203. doi: 10.1094/PDIS.2000.84.2.203B CrossRefGoogle Scholar
  25. Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M et al (2003) Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107:1226–1234. doi: 10.1007/s00122-003-1372-3 PubMedCrossRefGoogle Scholar
  26. Schnurbusch T, Paillard S, Schori A, Messmer M, Schachemayr G, Winzeler M et al (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484. doi: 10.1007/s00122-003-1444-4 PubMedCrossRefGoogle Scholar
  27. Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838CrossRefGoogle Scholar
  28. Singh RP, Huerta-Espino J (2004) The use of ‘single backcross, selected bulk’ breeding approach for transferring minor genes based rust resistance into adapted cultivars. In: Black CK, Panozzo JF, Rebetzke GJ (eds) Proc 54th Aust cereal chem conf and 11th wheat breeders assembly. Canberra, ACT, Australia, pp 48–51; 8–12Google Scholar
  29. Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88:890–894. doi: 10.1094/PHYTO.1998.88.9.890 PubMedCrossRefGoogle Scholar
  30. Singh D, Park RF, McIntosh RA (2007) Characterization of wheat leaf rust resistance gene Lr34 in Australian wheats using components of resistance and the linked molecular marker csLV34. Aust J Agric Res 58:1106–1114CrossRefGoogle Scholar
  31. Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336Google Scholar
  32. Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735. doi: 10.1007/s00122-005-2058-9 PubMedCrossRefGoogle Scholar
  33. Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis var tritici. Agricultural Research Service E617. United States Department of Agriculture, Washington DCGoogle Scholar
  34. Stokstad E (2007) Deadly wheat fungus threatens world’s breadbaskets. Science 315:1786–1787. doi: 10.1126/science.315.5820.1786 PubMedCrossRefGoogle Scholar
  35. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • U. K. Bansal
    • 1
  • E. Bossolini
    • 2
  • H. Miah
    • 1
  • B. Keller
    • 2
  • R. F. Park
    • 1
  • H. S. Bariana
    • 1
  1. 1.Faculty of Agriculture, Food and Natural Resources, Plant Breeding Institute-CobbittyUniversity of SydneyCamdenAustralia
  2. 2.Institute of Plant BiologyUniversity of ZürichZurichSwitzerland

Personalised recommendations