Euphytica

, 164:221 | Cite as

Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae

  • Guadalupe Palomino
  • Laura Trejo Hernández
  • Eulogio de la Cruz Torres
Article

Abstract

Cytogenetic characterization by karyotyping and determination of DNA content by flow cytometry of seven cultivated varieties of Chenopodium was performed. Chenopodium quinoa cultivar Barandales and C. berlandieri subsp. nuttalliae cultigens Huauzontle, Quelite and Chia roja showed 2n = 4x = 36, x = 9. Statistically insignificant genome size differences for studied varieties ranged from 2.96 pg/2C (1 Cx = 724 Mbp) in C. quinoa to 3.04 pg/2C (1 Cx = 743 Mbp) in Huauzontle. Karyotype analyses revealed the presence of nine groups of four metacentric chromosomes, including two pairs of chromosomes with satellites. The first pair of satellites was located on the largest pair of chromosomes and the second on a different pair of chromosomes in all accessions analyzed. Variation among varieties was evident in chromosome size, genome length (GL) and the position of satellites. Chia roja exhibited greatest GL (58.82 μm) and biggest chromosomes (2.04 μm). Huauzontle showed the smallest GL (45.02 μm) and shortest chromosomes (1.60 μm). Comparison of GL in studied taxa was statistically significant and allowed to define three groups according to the use given to these plants. These data indicate that they are small, very stable genomes in terms of DNA content, and they support the allotetraploid origin(s) of C. berlandieri subsp. nuttalliae and C. quinoa.

Keywords

Chenopodium quinoa cultivar Barandales Chenopodium berlandieri subsp. nuttalliae cultigens Huauzontle Quelite Chia roja Flow cytometry Nuclear DNA content Karyotype 

References

  1. Basset J, Crompton WC (1982) The genus Chenopodium in Canada. Can J Bot 60:586–610Google Scholar
  2. Bennett MD, Smith J (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 334:309–345CrossRefGoogle Scholar
  3. Bhargava A, Shukla S, Ohri D (2006) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet Resour Crop Evol 53:1309–1320CrossRefGoogle Scholar
  4. Biradar DP, Rayburn AL (1993) Heterosis and nuclear DNA content in maize. Heredity 71:300–304CrossRefGoogle Scholar
  5. Bournouf-Radosevich M, Paupardin C (1985) Vegetative propagation of Chenopodium quinoa by shoot tip culture. Am J Bot 72:278–283CrossRefGoogle Scholar
  6. Cárdenas M, Hawkes JG (1948) Número de cromosomas de algunas plantas cultivadas por los indios de los Andes. Rev Agric B 32:109–114Google Scholar
  7. Conger AD, Fairchild LM (1953) A quick freeze method for making smear slides permanent. Stain Technol 28:281–283PubMedGoogle Scholar
  8. Crawford D (1973) Morphology, flavonoid chemistry and chromosome numbers of the Chenopodium neomexicanum complex. Madroño 22:185–195Google Scholar
  9. Das AB, Mohanty S, Das P (1999) 4C DNA variation and karyotype diversity in nine species of Ferocactus. Cytologia 64:17–24Google Scholar
  10. De la Cruz TE, Rubluo IA, Palomino HG, García AJM, Laguna CA (2007) Characterization of Chenopodium germplasm, selection of putative mutants and its cytogenetic study. In: Ochat S, Mohan-Jain S (eds) Breeding of neglected and under-utilized crops, spices and herbs. Science Publishers, Enfield, pp 123–136Google Scholar
  11. Del Angel C, Palomino G, García A, Méndez I (2006) Nuclear genome size and karyotype analysis in Mammillaria species (Cactaceae). Caryologia 59:177–186Google Scholar
  12. Dolezel J (1995) Flow cytometry: principles and applications in mutation breeding. 14th (IAEA/FAO) International training course on advances in plant mutation techniques. Viena, AustriaGoogle Scholar
  13. Dolezel J (1997) Applications of flow cytometry for study of plant genomes. J Appl Genet 38:285–302Google Scholar
  14. Dolezel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106PubMedCrossRefGoogle Scholar
  15. Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayers R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26CrossRefGoogle Scholar
  16. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128CrossRefGoogle Scholar
  17. Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Willey-Vch Verlag, GmbH and Co. KGaA, Weinheim, pp 41–65CrossRefGoogle Scholar
  18. Dvorák F (1986) Annotated chromosome counts of the genus Chenopodium Bertol. Scripta Fac Sci Nat Univ Purk Brun (Biol) 16:13–40Google Scholar
  19. Dvorák F (1989) Study on Chenopodium strictum agg. Feddes Repert 100:197–234Google Scholar
  20. Dvorák F, Dadaková B (1989) A contribution to a better understanding of the variability of Chenopodium rubrum L Bertol. Scripta Fac Sci Nat Univ Purk Brun (Biol) 19:323–330Google Scholar
  21. Ellul P, Boscaiu M, Vicente O, Moreno V, Rossello JA (2002) Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Ann Bot 90:345–351PubMedCrossRefGoogle Scholar
  22. Galbraith DH, Lambert GM, Macas J, Dolezel J (1998) Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson JP, Darzynkiewicz Z, Dean PN, Dressler LG, Orfao A, Rabinovitch PS, Stewart CC, Tanke HJ, Wheeless LL (eds) Current protocols in cytometry. Wiley, New York, pp 7.6.1–7.6.22Google Scholar
  23. Gandarillas H (1976) Genética y origen de la quinua (Chenopodium quinoa). Bol Genét Inst Fitotec Bolivia 9:3–14Google Scholar
  24. Gandarillas H, Luizaga J (1967) Número de cromosomas de Chenopodium quinoa Willd. en radículas y raicillas. Turrialba 17:275–279Google Scholar
  25. García AV (1990) Manual de técnicas de citogenética. Colegio de Posgraduados, Chapingo, MéxicoGoogle Scholar
  26. Giusti L (1970) El género Chenopodium en Argentina. l. Número de cromosomas. Darwiniana 16:98–105Google Scholar
  27. Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  28. Gupta R, Gupta PK (1978) Karyotipic studies in the genus Crotalaria Linn. Cytologia 43:357–369Google Scholar
  29. Harbhajan S (1961) Grain Amaranthus buckwheat and Chenopods. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  30. Heiser CH (1985) Chenopods: from weeds to the halls of Montezuma. In: Of plants and people. University of Oklahoma press, pp 82–99Google Scholar
  31. Joubés J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745PubMedCrossRefGoogle Scholar
  32. Kidwell MG (2002) Transponsable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63PubMedCrossRefGoogle Scholar
  33. Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Bot Pol 70:85–90Google Scholar
  34. Leitch AR, Lim KY, Leitch IJ, O’Neill M, Chye M, Low F (1998a) Molecular cytogenetic studies in rubber, Hevea brasiliensis Mull. Arg. (Euphorbiaceae). Genome 41:464–467CrossRefGoogle Scholar
  35. Leitch IJ, Chase MW, Bennett MD (1998b) Phylogenetic analysis of DNA C-values evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl A):85–94CrossRefGoogle Scholar
  36. Levan A, Freiga K, Sandberg A (1964) Nomenclature for centromeric position on chromosome. Hereditas 52:201–219CrossRefGoogle Scholar
  37. Maluszynska J, Heslop-Harrison JS (1993) Physical Mapping of rDNA loci in Brassica species. Genome 36:774–781PubMedCrossRefGoogle Scholar
  38. Markova M (1975) Karyosystematische untersuchungen an den Cistaceae Bulgariens. Plant Syst Evol 123:283–315CrossRefGoogle Scholar
  39. Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839PubMedCrossRefGoogle Scholar
  40. Mohanty S, Das AB, Das P (1996) Analysis of chiasma frequency and nuclear DNA variation in some species of Mammillaria. Cytobios 88:173–181Google Scholar
  41. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewicz Z, Crissman HA (eds) Methods in cell biology. Academic Press, New YorkGoogle Scholar
  42. Palomino GH, Segura MD, Bye RB, Mercado RP (1990) Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). Southwest Nat 35:351–353CrossRefGoogle Scholar
  43. Palomino G, Dolezel J, Méndez I, Rubluo A (2003) Nuclear genome size analysis of A. tequilana Weber. Caryologia 56:37–46Google Scholar
  44. Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28PubMedCrossRefGoogle Scholar
  45. Price HJ (1976) Evolution of DNA content in higher plants. Bot Rev 42:27–52CrossRefGoogle Scholar
  46. Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR (1999) Genetic relationship among 19 accessions of six species of Chenopodium L. by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105:25–32CrossRefGoogle Scholar
  47. Simmonds NW (1971) The breeding system of Chenopodium quinoa. I. Male sterility. Heredity 27:73–82CrossRefGoogle Scholar
  48. Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens MR (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600PubMedCrossRefGoogle Scholar
  49. Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16CrossRefGoogle Scholar
  50. Walters TW (1987) Electrophoretic evidence for the evolutionary relationship of the tetraploid Chenopodium berlandieri to its putative diploid progenitors. Selbyana 10:36–55Google Scholar
  51. Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of “Huauzontle” (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Am J Bot 66(2):198–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Guadalupe Palomino
    • 1
  • Laura Trejo Hernández
    • 1
  • Eulogio de la Cruz Torres
    • 2
  1. 1.Instituto de Biología, Jardín BotánicoUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Departamento de BiologíaInstituto Nacional de Investigaciones NuclearesOcoyoacac, MexicoMexico

Personalised recommendations