, Volume 164, Issue 1, pp 81–92 | Cite as

Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components

  • P. Kaushal
  • D. R. Malaviya
  • A. K. Roy
  • Shalini Pathak
  • A. Agrawal
  • Ambica Khare
  • S. A. Siddiqui


One hundred and sixty accessions representing global germplasm of guinea grass (Panicum maximum Jacq.), an important apomictic (aposporous) fodder crop, were subjected to study on reproductive diversity in apomictic seed development utilizing ovule clearing and flow cytometric seed screen (FCSS). Single seed FCSS of selected 14 tetraploid and five hexaploid lines demonstrated uncoupling between the three apomixis components, viz. apomeiosis, parthenogenesis and functional endosperm development, in natural as well as experimental populations, though it differed across ploidy levels and genotypes. Reconstruction of reproductive pathways yielded a total of eight different pathways of seed development, arising by uncoupling/recombination between apomixis components. Amongst these, two pathways involving modifications in embryo-sac (ES) (presence of two polar nuclei in aposporous ES that fuse prior to fertilization) and fertilization process (fusion of only one polar nucleus in a sexual ES) have been reported for the first time. Some of the combinations, such as MI (haploids arising from parthenogenetic development of reduced egg cell), were found viable only in hexaploid background. Germplasm lines with higher expression of individual components were also identified. These components (including autonomous endosperm development) were also experimentally partitioned in hexaploid progenies (derived from a tetraploid parent viz. accession IG 04-164) that showed segregation in their reproductive capacities, and are reported for the first time. Occurrence of several apomixis recombinants (phenotypic) in guinea grass lines suggested their hybrid origin, favors a multigene model for apomixis, with their penetrance affected by modifiers and epigenetic mechanisms, in contrast to earlier reports of single locus control. Implications of partitioning components on apomixis research are discussed.


Apospory Endosperm Parthenogenesis Plant reproduction Seed development 


  1. Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217CrossRefGoogle Scholar
  2. Anonymous (2007) Apomixis—guinea grass. Annual report 2006–2007. Indian Grassland and Fodder Research Institute, Jhansi, IndiaGoogle Scholar
  3. Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96:322–334PubMedCrossRefGoogle Scholar
  4. Bicknell RA, Koltunow A (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245PubMedCrossRefGoogle Scholar
  5. Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11–20PubMedCrossRefGoogle Scholar
  6. Burson BL, Hussey MA, Actkinson JM, Shafer GS (2002) Effect of pollination time on the frequency of 2n + n fertilization in apomictic buffelgrass. Crop Sci 42:1075–1080CrossRefGoogle Scholar
  7. Chen LZ, Kozono T (1994a) Cytological evidence of seed-forming embryo development in polyembryonic ovules of facultatively apomictic guinea grass (Panicum maximum Jacq.). Cytologia 59:351–359Google Scholar
  8. Chen LZ, Kozono T (1994b) Cytology and quantitative analysis of aposporous embryo sac development in guinea grass. Cytologia 59:253–260Google Scholar
  9. Combes D (1975) Polymorphisme et mode de reproduction dans la section des Maximae du genre Panicum (Graminees) en Afrique. Coll Menoires ORSTOM, Paris 77:1–100Google Scholar
  10. de Wet JMJ (1968) Diploid-tetraploid-haploid cycles and the origin of variability in Dicanthium agamospecies. Evolution 22:394–397CrossRefGoogle Scholar
  11. Dujardin M, Hanna WW (1986) An apomictic polyhaploid obtained from a pearl millet × Pennisetum squamulatum apomictic interspecific hybrid. Theor Appl Genet 72:33–36CrossRefGoogle Scholar
  12. Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta S, Takahara M, Nakajima K (2005) Co-segregation of AFLP and RAPD markers to apospory in guinea grass (Panicum maximum Jacq.). Japan Soc Grassl Sci 51:71–78CrossRefGoogle Scholar
  13. Grimanelli D, Harnandez M, Perotti E, Savidan Y (1997) Dosage effects in the endosperm of diplosporous apomict Tripsacum (Poaceae). Sex Plant Reprod 10:279–282CrossRefGoogle Scholar
  14. Jain A, Zadoo SN, Roy AK, Kaushal P, Malaviya DR (2003) Meiotic system and probable basic chromosome number of Panicum maximum Jacq. accessions. Cytologia 68:7–13CrossRefGoogle Scholar
  15. Jain A, Roy AK, Kaushal P, Malaviya DR, Zadoo SN (2006) Isozyme banding pattern and estimation of genetic diversity among guinea grass germplasm. Genet Resour Crop Evol 53:339–347CrossRefGoogle Scholar
  16. Kaushal P, Malaviya DR, Singh KK (1999) Evaluation of exotic accessions of guinea grass (Panicum maximum Jacq.). Ind J Plant Genet Resour 12:215–218Google Scholar
  17. Kaushal P, Malaviya DR, Roy AK (2004) Prospects for breeding apomictic rice: a reassessment. Curr Sci 87:292–296Google Scholar
  18. Kaushal P, Roy AK, Khare A, Malaviya DR, Zadoo SN, Choubey RN (2007) Crossability and characterization of interspecific hybrids between sexual Pennisetum glaucum (pearl millet) and a new cytotype (2n = 56) of apomictic P. squamulatum. Cytologia 72:111–118CrossRefGoogle Scholar
  19. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574PubMedCrossRefGoogle Scholar
  20. Koltunow AM, Johnson SD, Bicknell RA (2000) Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod 12:253–266CrossRefGoogle Scholar
  21. Malaviya DR (1998) Evaluation of Panicum maximum lines for sustained productivity. Range Manage Agroforestry 19:126–132Google Scholar
  22. Malaviya DR, Kaushal P (2005) IGFRI Guinea grass germplasm catalogue. Indian Grassland and Fodder Research Institute, Jhansi, pp 26Google Scholar
  23. Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2007) Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci 172:970–977CrossRefGoogle Scholar
  24. Matzk F (1991) A novel approach to differentiated embryos in the absence of endosperm. Sex Plant Reprod 4:88–94CrossRefGoogle Scholar
  25. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108PubMedCrossRefGoogle Scholar
  26. Matzk F, Meister A, Brutovska R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282PubMedCrossRefGoogle Scholar
  27. Matzk F, Prodanovic S, Baumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24PubMedCrossRefGoogle Scholar
  28. Mecchia MA, Ochogavia A, Selva JP, Laspina N, Felitti S, Martelloto LG, Spangenberg G, Echenique V, Pessino SC (2007) Genome polymorphisms and gene differential expression in a ‘back-and-forth’ ploidy altered series of weeping lovegrass (Eragrotis curvula). J Plant Physiol 164:1051–1061PubMedCrossRefGoogle Scholar
  29. Morgan RN, Ozias-Akins P, Hanna WW (1998) Seed set in an apomictic BC3 pearl millet. Int J Plant Sci 159:87–89CrossRefGoogle Scholar
  30. Nakagawa H, Hanna WW (1990) Morphology, origin and cytogenetics of a 48-chromosome Panicum maximum. Cytologia 55:471–474Google Scholar
  31. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angioperms. Springer, Berlin, pp 475–518Google Scholar
  32. Noyes RD (2005) Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae). Heredity 94:193–198PubMedCrossRefGoogle Scholar
  33. Noyes RD (2006) Apomixis via recombination in genome regions for apomeiosis (diplospory) and parthenogenesis in Erigeron. Sex Plant Reprod 19:7–18CrossRefGoogle Scholar
  34. Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annus. Genetics 155:379–390PubMedGoogle Scholar
  35. Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214CrossRefGoogle Scholar
  36. Ozias-Akins P, vanDijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537PubMedCrossRefGoogle Scholar
  37. Reddy PS, d’Cruz R (1969) Mechanism of apomixis in Dicanthium annulatum (Forskk) Stapf. Bot Gaz 130:71–79CrossRefGoogle Scholar
  38. Roche D, Hanna W, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349CrossRefGoogle Scholar
  39. Rodrigues JCM, Koltunow AMG (2005) Epigenetic aspects of sexual and asexual seed development. Acta Biol Cracoviensia Ser Bot 47:37–49Google Scholar
  40. Rutihauser A (1948) Pseudogamie und polymorphie in der gattung Potentilla. Arch Julius Stiftung 23:267–424Google Scholar
  41. Savidan Y (1980) Chromosomal and embryological analyses in sexual × apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57:153–156CrossRefGoogle Scholar
  42. Savidan Y (1981) Genetics and utilization of apomixis for the improvement of guinea grass (Panicum maximum Jacq.) In: Proc XIV Intl Grassl Congr, Lexington, pp 182–184Google Scholar
  43. Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–85Google Scholar
  44. Savidan Y, Pernes J (1982) Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 36:596–600CrossRefGoogle Scholar
  45. Savidan YH, Jank L, Costa LCG, doValle CB (1989) Breeding Panicum maximum in Brazil. 1. Genetic resources, modes of reproduction and breeding procedures. Euphytica 41:107–112CrossRefGoogle Scholar
  46. Schranz ME, Kantama L, de Jong H, Mitchell-Olds T (2006) Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytol 171:425–438PubMedCrossRefGoogle Scholar
  47. vanDijk PJ, van Baarlen P, deJong H (2003) The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod 16:71–76CrossRefGoogle Scholar
  48. Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–11CrossRefGoogle Scholar
  49. Wieners RR, Fei S, Johnson RC (2006) Characterization of a USDA Kentucky bluegrass (Poa pratensis L.) core collection for reproductive mode and DNA content by flow cytometry. Genet Resour Crop Evol 53:1531–1541CrossRefGoogle Scholar
  50. Yao J-L, Zhou Y, Hu C-G (2007) Apomixis in Eulaliopsis binata: characterization of reproductive mode and endosperm development. Sex Plant Reprod 20:151–158CrossRefGoogle Scholar
  51. Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672CrossRefGoogle Scholar
  52. Zavesky L, Jarolimova V, Stepanek J (2007) Apomixis in Taraxacum paludosum (section Palustria, Asteraceae): recombinations of apomixis elements in inter-sectional crosses. Plant Syst Evol 265:147–163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Kaushal
    • 1
  • D. R. Malaviya
    • 1
  • A. K. Roy
    • 1
  • Shalini Pathak
    • 1
  • A. Agrawal
    • 1
  • Ambica Khare
    • 1
  • S. A. Siddiqui
    • 1
  1. 1.Cytogenetics Section, Crop Improvement DivisionIndian Grassland and Fodder Research InstituteJhansiIndia

Personalised recommendations